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• Use the imaginary unit i to write complex  

numbers. 

 

• Add, subtract, and multiply complex numbers. 

 

• Use complex conjugates to write the quotient of 

two complex numbers in standard form. 

 

• Find complex solutions of quadratic equations. 

What You Should Learn 
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The Imaginary Unit i 
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The Imaginary Unit i 

𝑥2 + 1 = 0 has no real solution 

         has complex solution 

 

Imaginary unit 𝒊 

𝑖 = −1 

where 𝑖2 = −1 
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The Imaginary Unit i 

Complex number in standard form:  

𝒂 + 𝒃𝒊 

 

Example: 

Complex number −5 + −9 

Standard form:     −5 + 3𝑖 
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The Imaginary Unit i 

𝒂         +            𝒃𝒊 

Real part imaginary part 
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The Imaginary Unit i 

𝑎 = 𝑎 + 0𝑖 
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The Imaginary Unit i 

EXAMPLE: 

𝑥 + 4𝑖 = −2 + 𝑏𝑖 

⇒  
𝑥 = −2
4 = 𝑏
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Operations with Complex Numbers 
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Operations with Complex Numbers 

EXAMPLE: 

2 + 5𝑖 − (4 + 7𝑖) 2 + 5𝑥 − (4 + 7𝑥) 

Add/Subtract binomials 

= 2 − 4 + 5 − 7 𝑥 = 2 − 4 + 5 − 7 𝑖 

= −2 + −2 𝑖 = −2 + −2 𝑥 

= −2 − 2𝑖 = −2 − 2𝑥 
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Operations with Complex Numbers 

The additive identity in the complex number system is 

zero (the same as in the real number system).  

 

The additive inverse of the complex number a + bi is 
 

 –(a + bi) = –a – bi. 
 

 

 (a + bi) + (–a – bi) = 0 + 0i = 0. 

Additive inverse 
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Example 1 – Adding and Subtracting Complex Numbers 

a. (4 + 7i) + (1 – 6i) = 4 + 7i + 1 – 6i 

                                = (4 + 1) + (7i – 6i) 

                                = 5 + i 

 

b. (1 + 2i) – (4 + 2i) = 1 + 2i – 4 – 2i 

                                = (1 – 4) + (2i – 2i) 

                                = –3 + 0 

                                = –3 

Remove parentheses. 

Group like terms. 

Write in standard form. 

Remove parentheses. 

Group like terms. 

Simplify. 

Write in standard form. 
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Example 1 – Adding and Subtracting Complex Numbers 

c. 3i – (–2 + 3i) – (2 + 5i) = 3i + 2 – 3i – 2 – 5i 

                                         = (2 – 2) + (3i – 3i – 5i) 

                                         = 0 – 5i 

                                         = –5i 

 

d. (3 + 2i) + (4 – i) – (7 + i) = 3 + 2i + 4 – i – 7 – i 

                                            = (3 + 4 – 7) + (2i – i – i) 

                                            = 0 + 0i 

                                            = 0 

cont’d 
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Operations with Complex Numbers 

(a + bi)(c + di) = a(c + di) + bi(c + di) 
 

                        = ac + (ad)i + (bc)i + (bd)i2 
 

                       = ac + (ad)i + (bc)i + (bd)(–1) 
 

                       = ac – bd + (ad)i + (bc)i 
  

                       = (ac – bd) + (ad + bc)i 
 

Distributive Property 

Distributive Property 

i 
2 = –1 

Commutative Property 

Associative Property 
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  FOIL 

Complex Numbers Binomials 
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Complex Conjugates 
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Complex Conjugates 

The product of two complex numbers can be a real 

number.  

 

This occurs with pairs of complex numbers of the form  

a + bi and a – bi, called complex conjugates. 

 

    (a + bi)(a – bi) = a2 – abi + abi – b2i2        

 

                            = a2 – b2(–1) 
 

                                                                                = a2 + b2 
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Example 3 – Multiplying Conjugates 

Multiply each complex number by its complex conjugate. 

a. 1 + i          b. 4 – 3i 

 

Solution: 

a. The complex conjugate of 1 + i is 1 – i. 

      (1 + i )(1 – i)  = 12 –  i2 

 

                 = 1 – (–1) 
  

                           = 2 
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Example 3 – Solution 

b. The complex conjugate of 4 – 3i is 4 + 3i. 

      (4 – 3i)(4 + 3i)  = 42 – (3i)2 

  

                              = 16 – 9i2 

  

                              = 16 – 9(–1) 
  

                              = 25 

cont’d 
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Complex Conjugates 

To write the quotient of a + bi and c + di in standard form, 

where c and d are not both zero, multiply the numerator 

and denominator by the complex conjugate of the 

denominator to obtain 

Standard form 
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Complex Solutions of Quadratic 

Equations 
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Complex Solutions of Quadratic Equations 

When using the Quadratic Formula to solve a quadratic 

equation, you often obtain a result such as         , which you 

know is not a real number. By factoring out i =         , you 

can write this number in standard form. 

 

 

 

The number      i  is called the principal square root of –3. 
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Example 6 – Complex Solutions of a Quadratic Equation 

Solve (a) x2 + 4 = 0 and (b) 3x2 – 2x + 5 = 0. 

 

Solution: 

a.    x2 + 4 = 0  
 

             x2 = –4 
 

              x = 2i 

 

b.   3x2 – 2x + 5 = 0 

 

Write original equation. 

Subtract 4 from each side. 

Extract square roots. 

Write original equation. 

Quadratic Formula 
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Example 6 – Solution 

Simplify. 

Write             in standard form. 

Write in standard form. 

cont’d 


