COMPLEX NUMBERS

- Use the imaginary unit i to write complex numbers.
- Add, subtract, and multiply complex numbers.
- Use complex conjugates to write the quotient of two complex numbers in standard form.
- Find complex solutions of quadratic equations.

The Imaginary Unit i

IThe Imaginary Unit i

$x^{2}+1=0$ has no real solution
has complex solution

Imaginary unit \boldsymbol{i}

$$
\begin{gathered}
i=\sqrt{-1} \\
\text { where } i^{2}=-1
\end{gathered}
$$

Imaginary Unit i

Complex number in standard form:

$$
a+b i
$$

Example:
Complex number $-5+\sqrt{-9}$
Standard form: $-5+3 i$
$-5+\sqrt{-9}=-5+\sqrt{3^{2}(-1)}=-5+3 \sqrt{-1}=-5+3 i$.

Imaginary Unit i

Definition of a Complex Number

If a and b are real numbers, the number $a+b i$ is a complex number, and it is said to be written in standard form. If $b=0$, the number $a+b i=a$ is a real number. If $b \neq 0$, the number $a+b i$ is called an imaginary number. A number of the form $b i$, where $b \neq 0$, is called a pure imaginary number.

The Imaginary Unit i

$$
a=a+0 i
$$

Equality of Complex Numbers

Two complex numbers $a+b i$ and $c+d i$, written in standard form, are equal to each other

$$
a+b i=c+d i \quad \text { Equality of two complex numbers }
$$

if and only if $a=c$ and $b=d$.

EXAMPLE:

$$
\begin{aligned}
& x+4 i=-2+b i \\
& \Rightarrow\left\{\begin{array}{c}
x=-2 \\
4=b
\end{array}\right.
\end{aligned}
$$

Operations with Complex Numbers

Addition and Subtraction of Complex Numbers

If $a+b i$ and $c+d i$ are two complex numbers written in standard form, their sum and difference are defined as follows.

$$
\begin{aligned}
& \text { Sum: }(a+b i)+(c+d i)=(a+c)+(b+d) i \\
& \text { Difference: }(a+b i)-(c+d i)=(a-c)+(b-d) i
\end{aligned}
$$

EXAMPLE:

$$
\begin{aligned}
& 2+5 i-(4+7 i) \\
= & (2-4)+(5-7) i \\
= & -2+(-2) i \\
= & -2-2 i
\end{aligned}
$$

Add/Subtract binomials

$$
\begin{aligned}
& 2+5 x-(4+7 x) \\
= & (2-4)+(5-7) x \\
= & -2+(-2) x \\
= & -2-2 x
\end{aligned}
$$

The additive identity in the complex number system is zero (the same as in the real number system).

The additive inverse of the complex number $a+b i$ is

$$
\begin{aligned}
& -(a+b i)=-a-b i . \quad \text { Additive inverse } \\
& (a+b i)+(-a-b i)=0+0 i=0 .
\end{aligned}
$$

Fxample 1 - Adding and Subtracting Complex Numbers

a. $(4+7 i)+(1-6 i)=4+7 i+1-6 i$

$$
\begin{array}{ll}
=(4+1)+(7 i-6 i) & \\
\text { Group like terms. } \\
=5+i & \\
\text { Write in standard form. }
\end{array}
$$

b. $(1+2 i)-(4+2 i)=1+2 i-4-2 i$

$$
\begin{aligned}
& =(1-4)+(2 i-2 i) \\
& =-3+0 \\
& =-3
\end{aligned}
$$

Remove parentheses.

Remove parentheses.
Group like terms.
Simplify.
Write in standard form.

: Fexample 1 - Adding and Subtracting Complex Numbers

c. $3 i-(-2+3 i)-(2+5 i)=3 i+2-3 i-2-5 i$

$$
\begin{aligned}
& =(2-2)+(3 i-3 i-5 i) \\
& =0-5 i \\
& =-5 i
\end{aligned}
$$

d. $(3+2 i)+(4-i)-(7+i)=3+2 i+4-i-7-i$

$$
\begin{aligned}
& =(3+4-7)+(2 i-i-i) \\
& =0+0 i \\
& =0
\end{aligned}
$$

Operations with Complex Numbers

$(a+b i)(c+d i)=a(c+d i)+b i(c+d i)$
$=a c+(a d) i+(b c) i+(b d) i^{2}$
$=a c+(a d) i+(b c) i+(b c)(-1) \quad i^{2}=-1$
$=a c-b d+(a d) i+(b c) i$
$=(a c-b d)+(a d+b c) i$

Distributive Property
Distributive Property

Commutative Property

Associative Property

Complex Numbers
Binomials

Complex Conjugates

MComplex Conjugates

The product of two complex numbers can be a real number.

This occurs with pairs of complex numbers of the form $a+b i$ and $a-b i$, called complex conjugates.

$$
\begin{aligned}
(a+b i)(a-b i) & =a^{2}-a b i+a b i-b^{2} i^{2} \\
& =a^{2}-b^{2}(-1) \\
& =a^{2}+b^{2}
\end{aligned}
$$

Fxample 3 - Multiplying Conjugates

Multiply each complex number by its complex conjugate.
$\begin{array}{ll}\text { a. } 1+i & \text { b. } 4-3 i\end{array}$

Solution:

a. The complex conjugate of $1+i$ is $1-i$.

$$
\begin{aligned}
(1+i)(1-i) & =1^{2}-i^{2} \\
& =1-(-1) \\
& =2
\end{aligned}
$$

b. The complex conjugate of $4-3 i$ is $4+3 i$.

$$
\begin{aligned}
(4-3 i)(4+3 i) & =4^{2}-(3 i)^{2} \\
& =16-9 i^{2} \\
& =16-9(-1) \\
& =25
\end{aligned}
$$

To write the quotient of $a+b i$ and $c+d i$ in standard form, where c and d are not both zero, multiply the numerator and denominator by the complex conjugate of the denominator to obtain

$$
\begin{aligned}
\frac{a+b i}{c+d i} & =\frac{a+b i}{c+d i}\left(\frac{c-d i}{c-d i}\right) \\
& =\frac{(a c+b d)+(b c-a d) i}{c^{2}+d^{2}}
\end{aligned}
$$

Standard form

Complex Solutions of Quadratic Equations

Complex Solutions of Quadratic Equations

When using the Quadratic Formula to solve a quadratic equation, you often obtain a result such as $\sqrt{-3}$, which you know is not a real number. By factoring out $i=\sqrt{-1}$, you can write this number in standard form.

$$
\sqrt{-3}=\sqrt{3(-1)}=\sqrt{3} \sqrt{-1}=\sqrt{3} i
$$

The number $\sqrt{3} i$ is called the principal square root of -3 .

Principal Square Root of a Negative Number

If a is a positive number, the principal square root of the negative number $-a$ is defined as

$$
\sqrt{-a}=\sqrt{a} i
$$

Solve (a) $x^{2}+4=0$ and (b) $3 x^{2}-2 x+5=0$.

Solution:
a. $x^{2}+4=0$

$$
\begin{aligned}
x^{2} & =-4 \\
x & = \pm 2 i
\end{aligned}
$$

b. $3 x^{2}-2 x+5=0$

$$
x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(3)(5)}}{2(3)}
$$

Write original equation.

Subtract 4 from each side.

Extract square roots.

Write original equation.

Quadratic Formula

$$
\begin{aligned}
& =\frac{2 \pm \sqrt{-56}}{6} \\
& =\frac{2 \pm 2 \sqrt{14} i}{6} \\
& =\frac{1}{3} \pm \frac{\sqrt{14}}{3} i
\end{aligned}
$$

Simplify.

Write $\sqrt{-56}$ in standard form.

Write in standard form.

