The Basics of Trigonometry

I. Definitions

A. An <u>angle</u> is formed by rotating a ray around its endpoint or <u>vertex</u>. The initial position of the ray is the <u>initial side</u> of the angle, while the location of the ray at the end of its rotation is the <u>terminal side</u> of the angle. If the rotation of an angle is counterclockwise, the angle is <u>positive</u>; if the rotation is clockwise, the angle is <u>negative</u>.

B. An angle is in <u>standard position</u> if its vertex is at the origin of a rectangular coordinate system and its initial side is along the positive *x*-axis. An angle in standard position is said to lie in the <u>quadrant</u> where its terminal side lies.

Angle in standard position

C. An angle in standard position whose terminal side coincides with the *x*-axis or *y*-axis is called a <u>quadrantal angle</u>. Two angles with the same initial side and the same terminal side, but different amounts of rotation, are called <u>coterminal angles</u>.

Quadrantal angle

Coterminal angles

D. Suppose a circle has radius r > 0. Let θ be a central angle of the circle. If θ cuts off an arc of length s on the circle, then the <u>radian measure</u> of θ is $\theta = \frac{s}{r}$. The radian measure of an angle is the ratio of the arc length cut by the angle to the radius of the circle. For this reason, a radian measure is a real number without any units.

Radian measure of
$$\theta = \frac{1}{1} = 1$$

$$180^{\circ} = \frac{\pi}{1} = \pi$$
 radians

 θ has radian measure 1

Also, 1 radian =
$$\frac{180^{\circ}}{\pi} \approx 57.3^{\circ}$$

Example: Convert 150° to radian measure and $\frac{7\pi}{4}$ to degree measure.

$$150^{\circ} = 150^{\circ} \left(\frac{\pi}{180^{\circ}} \right) = \frac{5\pi}{6} \text{ and } \frac{7\pi}{4} \left(\frac{180^{\circ}}{\pi} \right) = 7(45^{\circ}) = 315^{\circ}$$

E. Let P(x, y) be a point other than the origin on the terminal side of an angle θ in standard position. Let r be the distance from the origin to P(x, y); ie $r = \sqrt{x^2 + y^2}$. Then the <u>trigonometric ratios</u> of θ are defined as follows:

$$\sin \theta = \frac{y}{r}$$
 $\csc \theta = \frac{r}{y}$ $\sec \theta = \frac{r}{x}$ $\tan \theta = \frac{y}{x}$ $\cot \theta = \frac{x}{y}$

Example: The terminal side of an angle α goes through the point (-3, 4). Find the values of the trigonometric ratios of α .

$$r = \sqrt{(-3)^2 + 4^2} = \sqrt{25} = 5$$

$$\sin \alpha = \frac{4}{5} \qquad \csc \alpha = \frac{5}{4}$$

$$\cos \alpha = \frac{-3}{5} \qquad \sec \alpha = \frac{5}{-3}$$

$$\tan \alpha = \frac{4}{-3} \qquad \cot \alpha = \frac{-3}{4}$$

- II. Trigonometric ratios for special angles
 - A. 0°

$$r = \sqrt{1^2 + 0^2} = \sqrt{1} = 1$$

$$\sin 0^{\circ} = \frac{0}{1} = 0$$
 $\csc 0^{\circ} = \frac{1}{0} = und$
 $\cos 0^{\circ} = \frac{1}{1} = 1$ $\sec 0^{\circ} = \frac{1}{1} = 1$

$$\tan 0^{\circ} = \frac{0}{1} = 0$$
 $\cot 0^{\circ} = \frac{1}{0} = und$

B. 30°

Recall from geometry that in a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle, the hypotenuse is always twice as long as the shortest side (side opposite the 30° angle) and the medium side (side opposite the 60° angle) is $\sqrt{3}$ times as long as the shortest side.

$$\sin 30^{\circ} = \frac{1}{2}$$
 $\csc 30^{\circ} = 2$
 $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$ $\sec 30^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$
 $\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ $\cot 30^{\circ} = \sqrt{3}$

C. 45°

Recall from geometry that in a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle, the legs are the same length and the hypotenuse is $\sqrt{2}$ times as long as either of the legs.

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
 $\csc 45^{\circ} = \sqrt{2}$
 $\cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ $\sec 45^{\circ} = \sqrt{2}$
 $\tan 45^{\circ} = \frac{1}{1} = 1$ $\cot 45^{\circ} = 1$

D. 60°

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$$
 $\cos 60^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$
 $\cos 60^{\circ} = \frac{1}{2}$
 $\sec 60^{\circ} = 2$
 $\tan 60^{\circ} = \sqrt{3}$
 $\cot 60^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

E. 90°

$$r = \sqrt{x^2 + y^2} = \sqrt{0^2 + 1^2} = \sqrt{1} = 1$$

$$\sin 90^\circ = \frac{1}{1} = 1$$

$$\csc 90^{\circ} = 1$$

$$\cos 90^\circ = \frac{0}{1} = 0$$

$$\sec 90^{\circ} = \frac{1}{0} = undefined$$

$$\tan 90^\circ = \frac{1}{0} = undefined$$
 $\cot 90^\circ = \frac{0}{1} = 0$

$$\cot 90^{\circ} = \frac{0}{1} = 0$$

F. 180°

$$r = \sqrt{(-1)^2 + 0^2} = \sqrt{1} = 1$$

$$\sin 180^{\circ} = \frac{0}{1} = 0$$
 $\csc 180^{\circ} =$

$$\cos 180^{\circ} = \frac{-1}{1} = -1$$
 $\sec 180^{\circ} = \frac{1}{-1} = -1$

$$\tan 180^\circ = \frac{0}{-1} = 0$$
 $\cot 180^\circ = \frac{-1}{0} = undefined$

G. 270°

$$r = \sqrt{0^2 + (-1)^2} = \sqrt{1} = 1$$

$$\sin 270^{\circ} = \frac{-1}{1} = -1$$

$$\csc 270^{\circ} = -1$$

$$\cos 270^{\circ} = \frac{0}{1} = 0$$

$$\sec 270^{\circ} = \frac{1}{0} = undefined$$

$$\tan 270^{\circ} = \frac{-1}{0} = undefined \quad \cot 270^{\circ} = \frac{0}{-1} = 0$$

III. Trigonometric ratios using quadrants and reference angles

A. Trigonometric ratios and quadrants

Example 1: Suppose that $\cos \alpha = -\frac{3}{5}$ and α lies in quadrant II. Find the other trigonometric ratios for α .

$$\cos \alpha = -\frac{3}{5} = \frac{x}{r} \Rightarrow \text{ since } r > 0, x = -3 \text{ and } r = 5. \text{ To find } y, r = \sqrt{x^2 + y^2} \Rightarrow 5 = \sqrt{(-3)^2 + y^2} \Rightarrow 25 = 9 + y^2 \Rightarrow y^2 = 16 \Rightarrow y = \pm 4. \text{ Since } \alpha \text{ lies in quadrant II, } y > 0 \Rightarrow y = 4.$$

$$\sin \alpha = \frac{4}{5} \qquad \csc \alpha = \frac{5}{4}$$

$$\cos \alpha = \frac{-3}{5}$$
 $\sec \alpha = \frac{5}{-3}$

$$\tan \alpha = \frac{4}{-3} \qquad \cot \alpha = \frac{-3}{4}$$

Example 2: Suppose that $\tan \beta = \frac{2}{3}$ and $\sin \beta < 0$. Find the other trigonometric ratios for β .

Since
$$\sin \beta < 0$$
, the $y < 0 \Rightarrow \tan \beta = \frac{2}{3} = \frac{-2}{-3} = \frac{y}{x} \Rightarrow x = -3$ and $y = -2$.
Thus, $r = \sqrt{x^2 + y^2} = \sqrt{(-2)^2 + (-3)^2} = \sqrt{13}$.

$$\sin \beta = \frac{-2}{\sqrt{13}} \qquad \qquad \csc \beta = \frac{\sqrt{13}}{-2}$$

$$\cos \beta = \frac{-3}{\sqrt{13}} \qquad \sec \beta = \frac{\sqrt{13}}{-3}$$

$$\tan \beta = \frac{2}{3} \qquad \cot \beta = \frac{3}{2}$$

	30°	150°	210°	330°		
sin	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$		
cos	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$		
tan	$\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$		
csc	2	2	-2	-2		
sec	$\frac{2\sqrt{3}}{3}$	$-\frac{2\sqrt{3}}{3}$	$-\frac{2\sqrt{3}}{3}$	$\frac{2\sqrt{3}}{3}$		
cot	$\sqrt{3}$	$-\sqrt{3}$	$\sqrt{3}$	$-\sqrt{3}$		

C. 45°, 135°, 225°, 315°

	45°	135°	225°	315°
sin	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$
cos	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
tan	1	- 1	1	-1
csc	$\sqrt{2}$	$\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$
sec	$\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$	$\sqrt{2}$
cot	1	- 1	1	-1

D. 60°, 120°, 240°, 300°

	60°	120°	240°	300°		
sin	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$		
cos	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$		
tan	$\sqrt{3}$	$-\sqrt{3}$	$\sqrt{3}$	$-\sqrt{3}$		
csc	$\frac{2}{\sqrt{3}}$	$\frac{2}{\sqrt{3}}$	$-\frac{2}{\sqrt{3}}$	$-\frac{2}{\sqrt{3}}$		
sec	2	-2	-2	2		
cot	$\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$		

E. The <u>reference angle</u> for the angle α is the positive acute angle formed by the terminal side of α and the x-axis. The following diagrams show the reference angle β for an angle α whose terminal side lies in the second, third, or fourth quadrants. Quadrantal angles do not have a reference angle. The reference angle for an angle in the first quadrant is the given angle.

Example 1: Find the exact value of tan120°.

The terminal side of the angle whose measure is 120° lies in the 2^{nd} quadrant, so $180^{\circ}-120^{\circ}=60^{\circ}$ is the reference angle. Also, tan is negative in the 2^{nd} quadrant. Thus, $\tan 120^{\circ}=-\tan 60^{\circ}=-\sqrt{3}$.

Example 2: Find the exact value of sin 210°.

The terminal side of the angle whose measure is 210° lies in the 3^{rd} quadrant, so $210^{\circ}-180^{\circ}=30^{\circ}$ is the reference angle. Also, sin is negative in the 3^{rd} quadrant. Thus, $\sin 210^{\circ}=-\sin 30^{\circ}=-\frac{1}{2}$.

Example 3: Find the exact value of cos 315°.

The terminal side of the angle whose measure is 315° lies in the 4th quadrant, so $360^{\circ} - 315^{\circ} = 45^{\circ}$ is the reference angle. Also, cos is positive in the 4th quadrant. Thus, $\cos 315^{\circ} = \cos 45^{\circ} = \frac{\sqrt{2}}{2}$.

Practice Sheet – The Basics of Trigonometry

T	Co	nvert	the	fol!	lowing	degree	measures	to	evact	radian	measures.

(1) $35^{\circ} =$ (2) $150^{\circ} =$ (3) $220^{\circ} =$ (4) 405°

II. Convert the following radian measures to degree measures:

(1) $\frac{2}{3}\pi =$ (2) $\frac{5}{9}\pi =$ (3) $\frac{7}{18}\pi =$ (4) $\frac{8}{5}\pi =$

III. The terminal side of an angle θ goes through the point (8, -15).

(1) r =

(2) $\sin \theta =$

(3) $\cos \theta =$

(4) $\tan \theta =$

IV. Suppose that $\tan \alpha = -\frac{3}{4}$ and $\cos \alpha < 0$.

(1) $\sin \alpha =$

(2) $\cos \alpha =$

V. Suppose that $\sin \beta = \frac{\sqrt{2}}{5}$ and $\tan \beta > 0$.

(1) $\cos \beta =$

(2) $\tan \beta =$

VI. Find the exact values for each of the following:

(1) $\sin 45^\circ =$ (2) $\cos 90^\circ =$ (3) $\tan 150^\circ =$ (4) $\sin 240^\circ =$

(5) $\cos 315^{\circ} =$ (6) $\tan 390^{\circ} =$ (7) $\sin 510^{\circ} =$ (8) $\cos(-60^{\circ}) =$

(9) $\tan(-135^\circ) = (10) \sin(-90^\circ) =$

Solution Key for The Basics of Trigonometry

I. (1)
$$\frac{7}{36}\pi$$
 (2) $\frac{5}{6}\pi$

(2)
$$\frac{5}{6}\pi$$

(3)
$$\frac{11}{9}\pi$$

(4)
$$\frac{9}{4}\pi$$

II. (1)
$$120^{\circ}$$
 (2) 100° (3) 70° (4) 288°

$$(2) 100^{\circ}$$

$$(3) 70^{\circ}$$

$$(4) 288^{\circ}$$

$$(2) -\frac{15}{17} \qquad (3) \frac{8}{17}$$

$$(3) \frac{8}{17}$$

$$(4) - \frac{15}{8}$$

IV. (1)
$$\frac{3}{5}$$
 (2) $-\frac{4}{5}$

$$(2) - \frac{4}{5}$$

V. (1)
$$\frac{\sqrt{23}}{5}$$
 (2) $\frac{\sqrt{2}}{\sqrt{23}}$

$$(2) \ \frac{\sqrt{2}}{\sqrt{23}}$$

VI. (1)
$$\frac{\sqrt{2}}{2}$$
 (2) 0

$$(3) - \frac{\sqrt{3}}{3}$$

$$(4) - \frac{\sqrt{3}}{2}$$

$$(5) \ \frac{\sqrt{2}}{2}$$

(5)
$$\frac{\sqrt{2}}{2}$$
 (6) $\frac{\sqrt{3}}{3}$

$$(7) \frac{1}{2}$$

(8)
$$\frac{1}{2}$$

(9) 1

$$(10) - 1$$