Finding the Equation of a Circle

By definition, a circle is the set of all points $P(\mathrm{x}, \mathrm{y})$ whose distance from a center $C(\mathrm{~h}, \mathrm{k})$ is the distance r. Thus P is considered a point on the circle if and only if the distance from P to C equals r. The general equation of a circle is $r^{2}=(x-h)^{2}+(y-k)^{2}$ where r is the radius and the point (\mathbf{h}, \mathbf{k}) is the center of the circle.

Example 1: \quad Find the equation of a circle with radius=3 and a center $(2,-5)$.
Step 1 Begin with the general equation of a circle:

$$
r^{2}=(x-h)^{2}+(y-k)^{2}
$$

Step 2 Plug in the values in place of their corresponding variables:
From the above example, $r=3, h=2$ and $k=-5$.
Therefore: $(3)^{2}=(x-(2))^{2}+(y-(-5))^{2}$
Step 3 Simplify the equation:
Simplify $(3)^{2}=(x-(2))^{2}+(y-(-5))^{2} \ldots$ to get $9=(x-2)^{2}+(y+5)^{2}$

Example 2: \quad Find the equation of a circle that has points $P(1,8)$ and $Q(5,-6)$ as the endpoints of a diameter.

Step 1
Use the midpoint formula, $m=\frac{\left(x_{1}+x_{2}\right)}{2}, \frac{\left(y_{1}+y_{2}\right)}{2}$, to find the center of the circle:
a. Plug values into midpoint formula $m=\frac{(1+5)}{2}, \frac{(8+(-6))}{2}$
b. Simplify $m=\frac{6}{2}, \frac{2}{2} \ldots$ to get $m=(3,1)$

The center between P and Q is $x=3$ and $y=1$, which is also the center coordinates, (h, k), of the circle.
Step 2 Use the general equation of a circle, one of the points given and the coordinates for the center to find the value of \boldsymbol{r} :
a. General equation of a circle is $r=\sqrt{(x-h)^{2}+(y-k)^{2}}$
b. Plug in values $P(1,8)$ and $C(3,1) \rightarrow r=\sqrt{(1-3)^{2}+(8-1)^{2}}$
c. Simplify $\rightarrow r=\sqrt{(-2)^{2}+(7)^{2}} \rightarrow r=\sqrt{4+49} \rightarrow r=\sqrt{53}$

Thus, the radius of the circle is $\sqrt{53}$.

Step 3 Plug in values into the general equation of a circle:
a. General equation of a circle is $r^{2}=(x-h)^{2}+(y-k)^{2}$
b. Plug in values $\rightarrow(\sqrt{53})^{2}=(x-3)^{2}+(y-1)^{2}$
c. Simplify to get $\rightarrow 53=(x-3)^{2}+(y-1)^{2}$

Example 3 Find the radius and center of a circle with equation $x^{2}+y^{2}+2 x-6 y+7=0$.

Step $1 \quad$ Group all x-terms and y-terms together, and move all constants to right-hand side of the equal sign:
a. The original equation is $x^{2}+y^{2}+2 x-6 y+7=0$.
b. Group all x-terms and y-terms together $\rightarrow\left(x^{2}+2 x\right)+\left(y^{2}-6 y\right)+7=0$
c. Move all constants to right-hand side of the equal sign $\rightarrow\left(x^{2}+2 x\right)+\left(y^{2}-6 y\right)=-7$

Step 2 Complete the square for each group by adding the square of half the coefficient of the x and y variable to each respective group and adding the same amount to the right-hand side of the equal sign:
a. The coefficient of $x=2$ and of $y=-6 \rightarrow\left(x^{2}+2 x+\left(\frac{2}{2}\right)^{2}\right)+\left(y^{2}-6 y+\left(\frac{-6}{2}\right)^{2}\right)=-7+\left(\frac{2}{2}\right)^{2}+\left(\frac{-6}{2}\right)^{2}$
b. Simplify $\rightarrow\left(x^{2}+2 x+(1)^{2}\right)+\left(y^{2}-6 y+(-3)^{2}\right)=-7+(1)^{2}+(-3)^{2} \rightarrow\left(x^{2}+2 x+1\right)+\left(y^{2}-6 y+9\right)=3$
c. Factor the resulting perfect square trinomials and write them as squares of a binomial \rightarrow $(x+1)^{2}+(y-3)^{2}=3$

Step 3 Use the resulting equation to obtain the radius and coordinates for the center:
From the equation, $(x+1)^{2}+(y-3)^{2}=3$, the center is $(-1,3)$, and the radius is $\sqrt{3}$.

Practice Exercises

Find the equation of a circle.

1. Center $(-1,-4)$; radius 8
2. Endpoints of a diameter are $P(-1,3)$ and $Q(7,-5)$

Given the equation of a circle, find the center and radius for each.
3. $x^{2}+y^{2}-2 x-2 y=2$
4. $x^{2}+y^{2}+6 y+2=0$

Answers:

1. $(x+1)^{2}+(y+4)^{2}=64$
2. $(x-3)^{2}+(y+1)^{2}=32$
3. Center $(1,1)$; radius 2
4. Center $(0,-3)$; radius
$\sqrt{7}$
