Review for Exam 2

NAME:

Instructions: The exam questions are closely related to the homework and to the examples shown in class. Make sure you review all problems in the following WeBWorK assignments: Square Root Property, Quadratic Formula, Shifting Parabolas, Parabola Vertices-Vertex Formula, Distance Formula, Circles, 3×3 Systems.

You will have several short questions to test your basic knowledge.

1. Fill in the missing value so that the expression $x^{2}-11 x+-$ is a perfect square trinomial. Then write the perfect square trinomial in factored form.
2. Solve $x^{2}=27$.
3. Find the vertex of the parabola $y=(x-8)^{2}$.
4. Find the vertex of the parabola $y=x^{2}-8$.
5. Find the center and the radius of the circle $x^{2}+y^{2}=21$.
6. Find the distance between the points $(3,-4)$ and $(1,10)$. If your answer has a radical, don't forget to write it in simplest radical form.

Most of the problems require several steps and you need to show all your work.

1. Solve a quadratic equation. (You can choose the method.)
(a) Solve the equation $x^{2}-4 x=-26$.
(b) Solve the equation $(x+7)^{2}=72$.
2. Solve a system of linear equations in 3 variables.

$$
\left(\begin{array}{ccc}
x-2 y+z & = & -4 \\
2 x+4 y-3 z & = & -1 \\
-3 x-6 y+7 z & = & 4
\end{array}\right)
$$

3. Given the parabola $y=2 x^{2}-10 x+3$
a) Find the vertex;
b) Graph the parabola (give the coordinates of at least one point on each side of the vertex). Clearly label the vertex and the points you chose on your graph;
c) Find the x-intercepts and the y-intercept and label them on your graph. Make sure you give exact answers.
4. Write the equation of the circle $x^{2}+y^{2}+4 x-8 y+16=0$ in standard form. Find the center and radius of the circle. Graph the circle. Find the coordinates of 4 points on the circle and label them on your graph.
5. Write an equation of a circle that has the points $(-2,3)$ and $(2,3)$ as endpoints.

Answers

The answers to short questions will be discussed in class. Graphs will also be discussed in class. 1 (a) $2 \pm i \sqrt{22} ; 1$ (b) $-7 \pm 6 \sqrt{2} ; 2)(-2,3 / 2,1) ; 3)$ vertex is $(5 / 2,-19 / 2), y$-intercept is $(0,3), x$-intercepts are $\left.\left(\frac{5-\sqrt{19}}{2}, 0\right),\left(\frac{5+\sqrt{19}}{2}, 0\right) ; 4\right)$ standard form $(x+2)^{2}+(y-4)^{2}=4$, center $(-2,4)$, radius $2 ; 5) x^{2}+(y-3)^{2}=4$.

