Graphs of Quadratic Equations Handout/Worksheet

1. Graphs of $f(x)=x^{2}+k$
(a) If $k>0$, then the graph of $f(x)=x^{2}+k$ is the same as the graph of $y=x^{2}$ shifted up k units.
(b) If $k<0$, then the graph of $f(x)=x^{2}+k$ is the same as the graph of $y=x^{2}$ shifted down $|k|$ units.
2. Graphs of $f(x)=(x-h)^{2}$
(a) If $h>0$, then the graph of $f(x)=(x-h)^{2}$ is the same as the graph of $y=x^{2}$ shifted right h units.
(b) If $h<0$, then the graph of $f(x)=(x-h)^{2}$ is the same as the graph of $y=x^{2}$ shifted left $|h|$ units.
3. Graphs of $f(x)=a x^{2}$
(a) If $a>0$, the parabola opens upward. Furthermore,

- If $0<a<1$, then the graph of $f(x)=a x^{2}$ is the same as the graph of $y=x^{2}$ with a vertical shrink by a factor of a.
- If $a>1$, then the graph of $f(x)=a x^{2}$ is the same as the graph of $y=x^{2}$ with a vertical stretch by a factor of a.
(b) If $a<0$, the parabola opens downward. Furthermore,
- If $0<|a|<1$, then the graph of $f(x)=a x^{2}$ is the same as the graph of $y=-x^{2}$ with a vertical shrink by a factor of $|a|$.
- If $|a|>1$, then the graph of $f(x)=a x^{2}$ is the same as the graph of $y=-x^{2}$ with a vertical stretch by a factor of $|a|$.

4. The graphs of $f(x)=a(x-h)^{2}+k$
(a) The vertex is located at (h, k).
(b) The axis of symmetry is the line $x=h$.
(c) If $a>0$, the parabola opens upward and k is the minimum value of the function.
(d) If $a<0$, the parabola opens downward, and k is the maximum value of the function.
5. Given the function defined by $h(x)=-\frac{1}{2}(x-4)^{2}+2$

- Identify the vertex.
- Sketch the graph.
- Identify the axis of symmetry.
- Identify the maximum and minimum value of the function.

6. Given $f(x)=x^{2}+8 x-1$

- Write the equation in the form $f(x)=a(x-h)^{2}+k$.
- Identify the vertex, axis of symmetry and minimum value of the function.

7. Given $h(x)=x^{2}-2 x+5$

- Use the vertex formula to find the vertex.
- Find the x - and y -intercepts.
- Sketch the function.

