TRIGONOMETRIC IDENTITIES

Recall that:

$$
\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x} \quad \sec x=\frac{1}{\cos x} \quad \csc x=\frac{1}{\sin x}
$$

(1) Rewrite the following trigonometric functions in terms of $\cos x$ and $\sin x$ only. Do not perform any algebraic simplification yet.

Example: The function $\cot x(\sec x+\sin x)$ can be rewritten as $\frac{\cos x}{\sin x}\left(\frac{1}{\cos x}+\sin x\right)$.
(a) $(\tan x)(\sec x)=(\square)(\square)$
(b) $1+\tan ^{2} x=1+(\square)$
[Note: $\tan ^{2} x=(\tan x)(\tan x)=(\tan x)^{2}$ and $\left.\tan ^{2} x \neq \tan \left(x^{2}\right)\right]$
(c) $\csc ^{2} x-\cot ^{2} x=(\square)-(\square)$
"squares"]
(d) $\frac{\cot x}{\csc x}=\frac{(\square)}{(\square)}$
(e) $\cos x(\sec x-\cos x)=\square(--\square)$
(f) $\tan ^{2} x \csc ^{2} x-\tan ^{2} x=(\square)-(-)$
(g) $\frac{(\csc x-\cot x)(\csc x+\cot x)}{\tan x}=$
(2) For each function in question (1), substitute each $\cos x$ by a and each $\sin x$ by b. Do not perform any algebraic simplification yet.

$$
\text { Example (cont'd): The function } \frac{\cos x}{\sin x}\left(\frac{1}{\cos x}+\sin x\right) \text { can be rewritten as } \frac{a}{b}\left(\frac{1}{a}+b\right) \text {. }
$$

Copy here your answer from 1(a)
\downarrow
(a) $(\square)(-\quad)(\square)$

Copy here your answer from 1(b)
\downarrow
(b) $1+(\square)=1+(\square)$

Copy here your answer from 1(c)
\downarrow
(c) $(\square)-(\square)=(-\quad-\quad)$

Copy here your answer from 1(d)
\downarrow
(d)

Copy here your answer from 1(e)
\downarrow
(e) $-\quad(--\quad)=-\quad-\quad-\quad)$

(g)
(3) Simplify each expression in question (2) algebraically.

Example (cont'd): The expression $\frac{a}{b}\left(\frac{1}{a}+b\right)$ can be rewritten as

$$
\frac{a}{b}\left(\frac{1}{a}+\frac{a b}{a}\right)=\frac{a}{b}\left(\frac{1+a b}{a}\right)=\frac{a(1+a b)}{b a}=\frac{1+a b}{b} .
$$

Notice that the simplification led to a single fraction.

Copy here your answer from 2(a)
\downarrow
(a) $(\square)(-$

Copy here your answer from 2(b)
\downarrow
(b) $1+(\square)=$

Copy here your answer from 2(c) \downarrow
(c) $(-)-(\square)=$

Copy here your answer from 2(d)
\downarrow
(d)

Copy here your answer from 2(e)
\downarrow
(e) -

Copy here your answer from 2(f) \downarrow
(f) $(\square)(-(-)=$
(g)

Now we can finally start proving trigonometric identities. Basically, we will put together the three procedures we have just practiced: rewrite, substitute, and simplify.

Step 1: Rewrite the identity in terms of $\cos x$ and $\sin x$ only.
Step 2: Substitute each $\cos x$ by a and each $\sin x$ by b.
Step 3: Simplify each side separately. You are done when the LHS is equal to the RHS.

Remark: sometimes, in order to show that the two sides are equal, we have to use the fundamental identity:

$$
\cos ^{2} x+\sin ^{2} x=1,
$$

which can be rewritten as

$$
(\cos x)^{2}+(\sin x)^{2}=1,
$$

or $a^{2}+b^{2}=1$. So, whenever you see $a^{2}+b^{2}$, remember to replace it by 1 . Things will be simpler!

Example: Show that $\cos x+\sin x \cdot \tan x=\sec x$.
Solution:

$$
\begin{array}{rlr}
\cos x+\sin x \cdot \tan x & =\sec x & \\
\cos x+\sin x \cdot \frac{\sin x}{\cos x} & =\frac{1}{\cos x} & \text { Step 1: rewrite } \\
a+b \cdot \frac{b}{a} & =\frac{1}{a} & \text { Step 2: substitute } \\
a+\frac{b^{2}}{a} & =\frac{1}{a} & \text { Step 3: simplify } \\
\frac{a \cdot a}{a}+\frac{b^{2}}{a} & =\frac{1}{a} & \begin{array}{l}
\text { turn the LHF into a single fraction }
\end{array} \\
\begin{array}{ll}
\frac{a^{2}}{a}+\frac{b^{2}}{a} & =\frac{1}{a} \\
\text { Drom one side to the other }
\end{array} \\
\frac{a^{2}+b^{2}}{a} & =\frac{1}{a} & \text { Remember: } a^{2}+b^{2}=1 \\
\frac{1}{a} & =\frac{1}{a} & \checkmark \quad \text { Done! © }
\end{array}
$$

(1) Show that:
(a) $\sin \theta \cot \theta=\cos \theta$
(b) $\sec ^{2} \theta \cot ^{2} \theta=\csc ^{2} \theta$
(c) $\cos \theta(\sec \theta-\cos \theta)=\sin ^{2} \theta$
(d) $\sin \theta(\csc \theta-\sin \theta)=\cos ^{2} \theta$
(e) $\tan \theta(\csc \theta+\cot \theta)=\sec \theta+1$
(f) $\tan ^{2} \theta \csc ^{2} \theta-\tan ^{2} \theta=1$
(g) $\frac{\sin \theta \cos \theta+\sin \theta}{\cos \theta+\cos ^{2} \theta}=\tan \theta$
(h) $\frac{1+\sin \theta}{\cos \theta+\cos \theta \sin \theta}=\sec \theta$
(i) $\frac{(\sin \theta+\cos \theta)^{2}}{\cos \theta}=\sec \theta+2 \sin \theta$
(j) $(1+\sin \theta)(1-\sin \theta)=\cos ^{2} \theta$
(k) $\frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta=\csc \theta$
(1) $\frac{\tan \theta}{\csc \theta}-\frac{\sin \theta}{\cos \theta}=\frac{\sin \theta-1}{\cot \theta}$
(m) $\cos ^{2} \tan ^{2} x=1-\cos ^{2} x$
(n) $\tan x+\cot x=\sec x \csc x$
(o) $\frac{\cos x}{\tan x}=\csc x-\sin x$
(p) $\frac{\cos \theta}{1-\sin \theta}=\sec \theta+\tan \theta$

