TRIGONOMETRIC IDENTITIES

Recall that:

$\sin x$	$\cos x$	1	1
$\tan x =$	$\cot x =$	$\sec x =$	$\csc x =$
$\cos x$	$\sin x$	$\cos x$	$\sin x$

(1) **Rewrite** the following trigonometric functions in terms of $\cos x$ and $\sin x$ only. Do not perform any algebraic simplification yet.

Example: The function $\cot x(\sec x + \sin x)$ can be rewritten as	$\left(\frac{1}{+\sin x}\right)$.
	$\left(\cos x \right)$

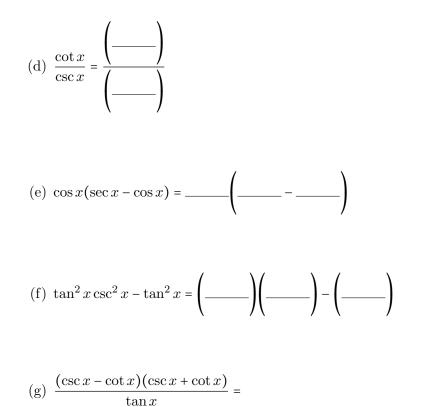
(b)
$$1 + \tan^2 x = 1 + \left(\underbrace{-----}_{\text{and } \tan^2 x} = (\tan x)(\tan x) = (\tan x)^2$$

and $\tan^2 x \neq \tan(x^2)$]

[Note: don't forget to add the

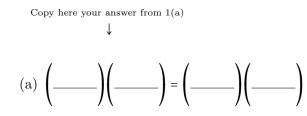
(c)
$$\csc^2 x - \cot^2 x = \left(\underbrace{----} \right) - \left(\underbrace{-----} \right)$$

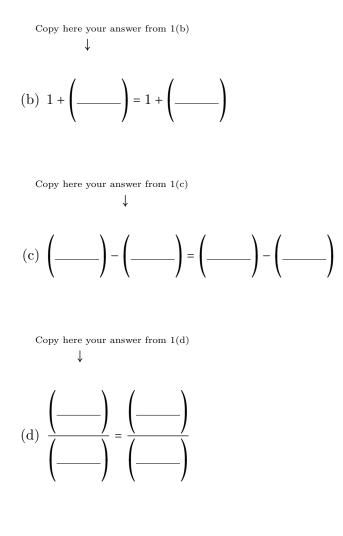
"squares"]

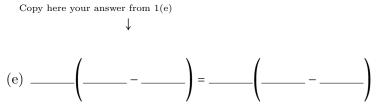


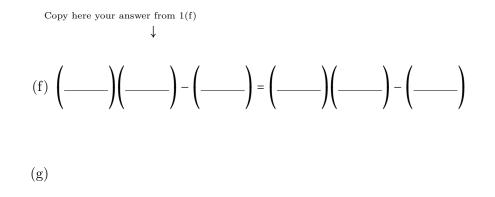
- $\tan x$
- (2) For each function in question (1), substitute each $\cos x$ by a and each $\sin x$ by b. Do not perform any algebraic simplification yet.

Example (cont'd): The function		$\left(\frac{1}{\cos x} + \sin x\right)$	can be rewritten as $\frac{a}{b}$	$\left(\frac{1}{a}+\frac{b}{a}\right).$	
--------------------------------	--	--	-----------------------------------	---	--



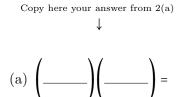


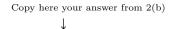


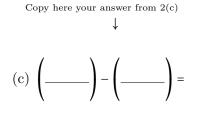


(3) **Simplify** each expression in question (2) algebraically.

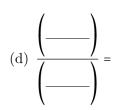
Example (cont'd): The expression $\frac{a}{b}\left(\frac{1}{a}+b\right)$ can be rewritten as $\frac{a}{b}\left(\frac{1}{a}+\frac{ab}{a}\right) = \frac{a}{b}\left(\frac{1+ab}{a}\right) = \frac{a(1+ab)}{ba} = \frac{1+ab}{b}.$ Notice that the simplification led to a single fraction.

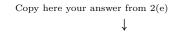


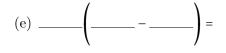


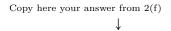


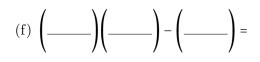
Copy here your answer from 2(d) \downarrow











(g)

Now we can finally start proving trigonometric identities. Basically, we will put together the three procedures we have just practiced: **rewrite**, **substitute**, and **simplify**.

Step 1: Rewrite the identity in terms of $\cos x$ and $\sin x$ only. **Step 2: Substitute** each $\cos x$ by a and each $\sin x$ by b. **Step 3: Simplify** each side **separately**. You are done when the LHS is equal to the RHS.

Remark: sometimes, in order to show that the two sides are equal, we have to use the fundamental identity: $\cos^2 x + \sin^2 x = 1.$

which can be rewritten as

which can be rewritten as $(\cos x)^2 + (\sin x)^2 = 1$, or $a^2 + b^2 = 1$. So, whenever you see $a^2 + b^2$, **remember** to replace it by 1. Things will be simpler!

Example: Show that $\cos x + \sin x \cdot \tan x = \sec x$. Solution: $\cos x + \sin x \cdot \tan x = \sec x$ $\cos x + \sin x \cdot \frac{\sin x}{\cos x} = \frac{1}{\cos x}$ Step 1: rewrite $a+b\cdot\frac{b}{a} = \frac{1}{a}$ Step 2: substitute $a + \frac{b^2}{a} = \frac{1}{a}$ Step 3: simplify turn the LHF into a single fraction $\frac{a \cdot a}{a} + \frac{b^2}{a} = \frac{1}{a}$ Don't move the terms from one side to the other $\frac{a^2}{a} + \frac{b^2}{a} = \frac{1}{a}$ $\frac{a^2+b^2}{a} = \frac{1}{a}$ **Remember:** $a^2 + b^2 = 1$ $\frac{1}{a} = \frac{1}{a}$ Done! © \checkmark

 $\mathbf{6}$

(1) Show that:
(a)
$$\sin \theta \cot \theta = \cos \theta$$

(b) $\sec^2 \theta \cot^2 \theta = \csc^2 \theta$
(c) $\cos \theta (\sec \theta - \cos \theta) = \sin^2 \theta$
(d) $\sin \theta (\csc \theta - \sin \theta) = \cos^2 \theta$
(e) $\tan \theta (\csc \theta + \cot \theta) = \sec \theta + 1$
(f) $\tan^2 \theta \csc^2 \theta - \tan^2 \theta = 1$
(g) $\frac{\sin \theta \cos \theta + \sin \theta}{\cos \theta + \cos^2 \theta} = \tan \theta$
(h) $\frac{1 + \sin \theta}{\cos \theta + \cos \theta \sin \theta} = \sec \theta$
(i) $\frac{(\sin \theta + \cos \theta)^2}{\cos \theta} = \sec \theta + 2\sin \theta$
(j) $(1 + \sin \theta)(1 - \sin \theta) = \cos^2 \theta$
(k) $\frac{\cos^2 \theta}{\sin \theta} + \sin \theta = \csc \theta$
(l) $\frac{\tan \theta}{\csc \theta} - \frac{\sin \theta}{\cos \theta} = \frac{\sin \theta - 1}{\cot \theta}$
(m) $\cos^2 \tan^2 x = 1 - \cos^2 x$
(n) $\tan x + \cot x = \sec x \csc x$
(o) $\frac{\cos x}{\tan x} = \csc x - \sin x$

(p)
$$\frac{\cos \theta}{1 - \sin \theta} = \sec \theta + \tan \theta$$