Example from physics: For an alternating current (AC) circuit like those that provide electricity to our homes, the current and voltage obey equations that involve the trig functions sine and/or cosine.

For an AC circuit which operates at 60 cycles (periods) per second, if the maximum current is 20 amperes, and the current is at 0 amperes at time $t=0$, then the amount of electrical current in the circuit obeys the equation

$$
i=20 \sin (120 \pi t)
$$

where i is the amount of current in amperes, and t is the time in seconds.
If the average voltage is 120 volts, then the voltage may obey the equation

$$
v=120 \sqrt{2} \sin (120 \pi t+0.003)
$$

Question 1:
At what times does the current reach 10 amperes in the first cycle?
We must translate the question into a trig equation: we want to know what is the time t when $i=10$, so by substituting 10 for i, we need to solve

$$
10=20 \sin (120 \pi t)
$$

To solve this problem, we will proceed in steps.
Step 1: Simplify the equation by substituting $x=120 \pi t$ in the argument of the sine: Solve the simplified equation

$$
10=20 \sin (x)
$$

as we have already learned to do.
First solve that equation for $\sin (x)$:

Next, find all the solutions to

in $[0,2 \pi)$ using the unit circle:

write your solutions here
Step 2: Now substitute $x=120 \pi t$ in each of your solutions to step 1 , and solve for t :

Question 2:
At what times does the voltage reach 0 volts in the first cycle? Remember that the voltage obeys the equation

$$
v=120 \sqrt{2} \sin (120 \pi t+0.003)
$$

We must translate the question into a trig equation: we want to know what is the time t when $v=0$, so by substituting 0 for v, we need to solve

$$
0=120 \sqrt{2} \sin (120 \pi t+0.003)
$$

To solve this problem, we will again proceed in steps.
Step 1: Simplify the equation by substituting $x=120 \pi t+0.003$ in the argument of the sine: Solve the simplified equation

$$
0=120 \sqrt{2} \sin (x)
$$

as we have already learned to do.
First solve that equation for $\sin (x)$:

Next, find all the solutions to

in $[0,2 \pi)$ using the unit circle:

write your solutions here
Step 2: Now substitute $x=120 \pi t+0.003$ in each of your solutions to step 1 , and solve for t :

Question 3: At what times does the current reach -10 amperes in the first cycle? Remember that the current obeys the equation

$$
i=20 \sin (120 \pi t)
$$

This time you work it all out: (Fill in all the blanks as you go!)

Translate the question into a trig equation: we want to know what is the time t when $i=\underbrace{\sim}$, so by substituting $\underbrace{\square}$ for i, we need to solve

To solve this problem, we will again proceed in steps.
Step 1: Simplify the equation by substituting substitute $x=\underbrace{\square}$: Solve the simplified equation

$$
\underbrace{\square-}=\underbrace{}
$$

as we have already learned to do.
First solve that equation for $\sin (x)$:

Next, find all the solutions to
write your equation here
in $[0,2 \pi)$ using the unit circle:

write your solutions here
Step 2: Now substitute $x=$ \qquad in each of your solutions to step 1 , and solve for t :

Question 4:
At what times does the voltage reach 120 volts in the first cycle? Remember that the voltage obeys the equation

$$
v=120 \sqrt{2} \sin (120 \pi t+0.003)
$$

This time you work it all out: (Fill in all the blanks as you go!)

Translate the question into a trig equation: we want to know what is the time t when $v=\underbrace{\quad}$, so by substituting $\underbrace{\square}$ for v, we need to solve

To solve this problem, we will again proceed in steps.
Step 1: Simplify the equation by substituting substitute $x=$ \qquad : Solve the simplified equation

$$
\underbrace{ـ}=\underbrace{}
$$

as we have already learned to do.
First solve that equation for $\sin (x)$:

Next, find all the solutions to
write your equation here
in $[0,2 \pi)$ using the unit circle:

write your solutions here
Step 2: Now substitute $x=$ \qquad in each of your solutions to step 1, and solve for t :

