## Class \#25 - Monday, May 9

## Section 6.3: Normal Random Variables (cont'd)

## Approximation Rules

Notation: If a random variable $X$ is normally distributed with mean $\mu$ and standard deviation $\sigma$, we write

$$
X \sim N(\mu, \sigma)
$$

All normal distributions have the following approximate probabilities (from p268 of the textbook):

## Approximation Rule

## A normal random variable with mean $\mu$ and standard deviation $\sigma$ will be

Between $\mu-\sigma$ and $\mu+\sigma$ with approximate probability 0.68
Between $\mu-2 \sigma$ and $\mu+2 \sigma$ with approximate probability 0.95
Between $\mu-3 \sigma$ and $\mu+3 \sigma$ with approximate probability 0.997
This approximation rule is illustrated in Fig. 6.6. It often enables us to obtain a quick feel for a data set.

We can also express the first rule as: "Approximately $68 \%$ of observations of a normally distributed random variable are within one standard deviation of the mean."
(Similarly: "Approximately $95 \%$ of observations of a normally distributed random variable are within two standard deviations of the mean" and "Approximately $99.7 \%$ of observations of a normally distributed random variable are within three standard deviations of the mean.")
In symbols: if $X \sim N(\mu, \sigma)$, then:

$$
\begin{gathered}
P(\mu-\sigma<X<\mu+\sigma) \approx 0.68 \\
P(\mu-2 \sigma<X<\mu+2 \sigma) \approx 0.95 \\
P(\mu-3 \sigma<X<\mu+3 \sigma) \approx 0.997
\end{gathered}
$$

Recall that these approximate probabilities correspond to certain areas under a normal curve. These are illustrated in Fig 6.6 in the textbook:


FIGURE 6.6
Approximate areas under a normal curve.

Example 1: HW \#7: Sec 6.3, \#1: We are told that the blood pressure of adults is normally distributed with mean 128.4 and standard deviation 19.6 (i.e., $X \sim(\mu=128.4, \sigma=19.6$ ), where $X$ is the random variable defined as the blood pressure of a randomly selected adult.

- Sketch the given normal distribution, labelling $\mu \pm \sigma, \mu \pm 2 \sigma, \mu \pm 3 \sigma$ on the horizontal axis and the approximate areas as in the Fig 6.6.
- Use these to answer the questions in the textbook.

Example 2: Use Fig 6.6 to find the approximate value of $P(X<\mu+\sigma)$, for $X \sim N(\mu, \sigma)$.

## Spreadsheet command:

=normdist (c, $\mu, \sigma$, true) returns the cumulative probability for a normal random variable with the given mean and standard deviation, i.e., for $X \sim N(\mu, \sigma)$, the spreadsheet command returns

$$
P(X<c)
$$

Example 3: Use the spreadsheet command to find the value of $P(X<\mu+\sigma)$, for $X \sim N(\mu, \sigma)$. (You can use any values for $\mu$ and $\sigma$; just make sure you enter $c=\mu+\sigma$ ).

## Standard normal random variables:

A standard normal random variable has mean $\mu=0$ and standard deviation $\sigma=1$. The letter $Z$ is usually used to refer to a standard normal random variable. Thus:

$$
Z \sim N(0,1)
$$

The standard normal curve is shown below:


## FIGURE 6.5

The standard normal curve.

Example 4: Write in the approximate areas (as in Fig 6.6) on the standard normal curve above. (Use this for Sec 6.3, \#3-7.)

