Class \#12 - Monday, March 14
 Section 4.5: Conditional Probability

Conditional Probability

- What is the probability of an event A given that we have some partial information about the outcome of the experiment? This is called conditional probability.
- notation: $P(A \mid B)=$ the conditional probability of A given that B has occurred (i.e., we have the information that B has occurred)
- formula for conditional probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- intuition: since we know B has occurred, B is new "reduced" sample space; the formula above calculates what proportion of that new sample space is also in A

Examples:

- Ross Sec 4.3: Examples 4.9, 4.11

Note:

- If we reverse A and B in the formula for conditional probability, we have the following formula for the conditional probability of B given A :

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

Multiplication Rule

- take the formulas for conditional probability:

$$
\begin{aligned}
& P(B \mid A)=\frac{P(A \cap B)}{P(A)} \\
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}
\end{aligned}
$$

and multiply through by the denominator in each equation $(P(A)$ and $P(B)$, respectively). This leads to the Multiplication Rule for $P(A \cap B)$, i.e., $P(A \& B)$, the probability that both A and B occur:

$$
P(A \cap B)=P(B \mid A) * P(A)=P(A \mid B) * P(B)
$$

Examples:

- Ross Sec 4.3: Example 4.12

Independence

- two events A and B are independent if knowing A has occurred doesn't change the probability of B, i.e.,

$$
P(B \mid A)=P(B)
$$

Using the formula

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

we see that A and B are independent if

$$
\frac{P(A \cap B)}{P(A)}=P(B)
$$

i.e.,

$$
P(A \cap B)=P(A) P(B)
$$

