Class \#8 - Monday February 29

Probability: Basic Concepts \& Properties

Homework \#3 - due Wednesday, March 9:

- Ross, Sec 3.7 (pp128-129): Exercises \#3, \#4
- Ross, Sec 12.2 (pp542-543): Exercises \#1, \#3 (for both of these exercises, in addition to the questions in the textbook, also calculate the slope and y-intercept of the linear regression line, and add the linear regression line to the scatterplot)
- Ross, Sec 4.2 (pp150-151): Exercises $\# 1, \# 2, \# 4, \# 7, \# 9, \# 10$
- Ross, Sec 4.3 (pp155-157): Exercises \#1(a)-(d), \#9, \#10

Exam \#1 - Wednesday, March 9:

- The exam will cover the material from Homeworks \#1-3

Basic Concepts/Definitions:

- probability experiment: any process where the outcome is uncertain
- sample space (of an experiment): the set of all possible outcomes S of an experiment
- an event: any particular set of outcomes, i.e., a subset of the sample space $A \subseteq S$
- basic set theory: complement of A, union $A \cup B$, intersection $A \cap B$, disjoint sets

Example 1: Many probability examples involves rolling dice or tossing coins.
(i) Suppose an experiment of rolling a 6 -sided die. What is the sample space, i.e., the set of possible outcomes? What are some examples of events?
(ii) Next consider the experiment of flipping a coin. What is the sample space in this case?

Example 2: Now suppose a probability experiment consists of first flipping a coin and then rolling a 6 -sided die.
(i) What is the sample space? How many outcomes are there in the sample space?
(ii) An example of an event A is $A=$ "Rolling a $4 "=\{\mathrm{H} 4, \mathrm{~T} 4\}$. Another example of an event is $B=$ "Tossing heads and rolling an even number." List the outcomes that make up the latter event.
(iii) What is the complement of A, i.e., A^{C} ? What is $A \cup B$? What is $A \cap B$? Are A and B disjoint?

Basic Properties of Probability: For an experiment with sample space S, we assume that for each event $A \subseteq S$ there is a number $P(A)$, called the probability of A, with the following properties:

- The probability of any event A is between 0 and $1: 0 \leq P(A) \leq 1$
- The probability of the entire sample space S is $1: P(S)=1$
- For any two disjoint events A and $B: P(A \cup B)=P(A)+P(B)$

What about two events that are not disjoint, i.e., that do have outcomes in common?

Addition Rule: For any events A and B,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Examples...

