Class \#4 - Wednesday February 10
 Measures of Variation (or "Dispersion")

Textbook readings:

- Ross, Sec 3.5: Sample Variance and Sample Standard Deviation
- Phillips, Chapter 4: Measures of Variability

Introduction: The following data sets have the same mean (compute them!), but clearly C is much more spread out (more "dispersed") than B, and B is much more spread out than A

$$
A=\{4,4,4,4,4\}, \quad B=\{1,2,5,6,6\}, \quad C=\{-40,0,5,20,35\}
$$

We can see this from the frequency histograms of these datasets. But how can we numerically measure the greater variation in C as compared to B as compared to A ?

We will define a statistic called the sample variance. The variance, and its square root, which is called the standard deviation, are the two most common measures of variation when considering data sets.

Formulas/Definitions:

- the deviation of an individual data value x_{i} is $x_{i}-\bar{x}$ (i.e., the difference between x_{i} and the mean; see Ross Sec 3.2.1, p78)
- square each of the individual deviations and add them up to get the "sum of squared deviations" $S S_{x}$:

$$
S S_{x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

(understand why we square the deviations! Read pp99-100 of Ross)

- the sample variance is the "average" of the squared deviations, but for technical reasons we divide by $n-1$ instead of n :

$$
\text { sample variance ("s squared"): } s^{2}=\frac{S S_{x}}{n-1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

- the standard deviation is just the square root of the variance:

$$
\text { sample standard deviation: } s=\sqrt{s^{2}}=\sqrt{\frac{S S_{x}}{n-1}}=\sqrt{\frac{\sum_{i=1}^{n}\left(x-\overline{x_{i}}\right)^{2}}{n-1}}
$$

- an advantage of using the standard deviation instead of the variance is that the standard deviation is in the same units as the original data

Spreadsheet Functions

- =var(data) and =stdev(data) compute the sample variance and sample standard deviation
- there are also functions =varp (data) and =stdevp (data) which compute the population variance and standard deviation
- the difference is that for the population statistics you divide by the size of the data set n instead of $n-1$

