\qquad

Math 2675: Calculus III E596, Fall 2015

Extra Credit Assignment [Due 12/8/2015]
Professor: Caner Koca

This assignment is worth 12 points. It will be added to your 3rd test score!

1. (12pts) The following table of values is given for a function $f(x, y)$. Based on the data in the table, (a) find all critical points (b) determine whether there is a local minimum, local maximum or a saddle point. (Note: You must show all your work explaining briefly how you find these points. You may lose points for insufficient explanations and incorrect statements.)

(x, y)	$f(x, y)$	f_{x}	f_{y}	$f_{x x}$	$f_{x y}$	$f_{y y}$
$(3,6)$	5	0	-4	-9	-16	-7
$(8,1)$	12	0	0	-2	4	-12
$(0,0)$	-3	18	2	9	1	0
$(-2,9)$	-10	0	0	12	3	0
$(-3,1)$	0	0	0	0	-1	44
$(1,0)$	1	0	3	-9	4	3
$(0,-2)$	3	0	0	8	-3	2
$(0,-1)$	12	12	3	9	2	40
$(0,1)$	0	0	-4	0	0	10

2. Find the maximum and minimum values of the function $f(x, y)=\sin ^{2} x+\sin ^{2} y$ subject to the constraint $x+y=\pi$.
3. Evaluate the integral $\iint_{R} x y d A$ where R is the region enclosed by the lines $y=\frac{x}{3}, \quad y=2 x-8$ and the x-axis.
4. Let U be a solid in the first octant which is bounded above by the plane $12 x+3 y+2 z=24$ and below by the $x y$-plane. Write a double integral which represents the volume of this solid. Then convert it into an iterated integral. (You do not need to compute the integral.)
5. Sketch the curve $r=4-4 \sin (2 \theta)$ on the $x y$-plane. YOU MUST SHOW AND EXPLAIN YOUR WORK. Correct graph without sufficient explanation will get zero credit.
6. Compute the integral

$$
\iint_{R} \cos \left(x^{2}+y^{2}+\pi\right) d A
$$

where R is the region bounded by the x-axis and the lower semicircle of radius 2 centered at the origin. (Hint: Use polar coordinates)

