

Professor: Caner Koca

Math 2675: Calculus III E596, Fall 2015

Extra Credit Assignment [Due 12/8/2015]

This assignment is worth 12 points. It will be added to your 3rd test score!

1. (12pts) The following table of values is given for a function f(x, y). Based on the data in the table, (a) find all critical points (b) determine whether there is a local minimum, local maximum or a saddle point. (**Note:** You must show all your work explaining briefly how you find these points. You may lose points for insufficient explanations and incorrect statements.)

(x,y)	f(x,y)	f_x	f_y	f_{xx}	f_{xy}	f_{yy}
(3,6)	5	0	-4	-9	-16	-7
(8, 1)	12	0	0	-2	4	-12
(0,0)	-3	18	2	9	1	0
(-2,9)	-10	0	0	12	3	0
(-3,1)	0	0	0	0	-1	44
(1,0)	1	0	3	-9	4	3
(0,-2)	3	0	0	8	-3	2
(0,-1)	12	12	3	9	2	40
(0,1)	0	0	-4	0	0	10

- 2. Find the **maximum and minimum values** of the function $f(x,y) = \sin^2 x + \sin^2 y$ subject to the constraint $x + y = \pi$.
- 3. Evaluate the integral $\iint_R xy \ dA$ where R is the region enclosed by the lines $y = \frac{x}{3}$, y = 2x 8 and the x-axis.
- 4. Let U be a solid in the first octant which is bounded above by the plane 12x + 3y + 2z = 24 and below by the xy-plane. Write a double integral which represents the volume of this solid. Then convert it into an iterated integral. (You do not need to compute the integral.)
- 5. Sketch the curve $r=4-4\sin(2\theta)$ on the xy-plane. YOU MUST SHOW AND EXPLAIN YOUR WORK. Correct graph without sufficient explanation will get zero credit.
- 6. Compute the integral

$$\iint\limits_{R} \cos(x^2 + y^2 + \pi) \ dA$$

where R is the region bounded by the x-axis and the lower semicircle of radius 2 centered at the origin. (Hint: Use polar coordinates)