Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	10	10	10	10	10	10	10	10	10	10	100
Score:											

Show all your work and simplify your answers.

For #1-6, determine whether the infinite series converges or diverges. Justify your answer by using an appropriate test:

1. (10 points)

$$\sum_{n=1}^{\infty} \frac{2^n}{3^n}$$

Solution: Converges as geometric series with r = 2/3 < 1. Converges to

$$\frac{2/3}{1 - 2/3} = \frac{2/3}{1/3} = 2$$

2. (10 points)

$$\sum_{n=1}^{\infty} \frac{n^4}{10n^4 + n^2 + 1}$$

Solution: Diverges by the Divergence Test:

$$\lim_{n \to \infty} \frac{7n^4}{10n^4 + n^2 + 1} = \lim_{n \to \infty} \frac{7n^4}{n^4(10 + 1/n^2 + 1/n^4)} = \frac{7}{10} \neq 0$$

3. (10 points)

$$\sum_{n=1}^{\infty} n^{-0.05}$$

Solution: Diverges since it's a *p*-series with p = 0.05 < 1:

$$\sum_{n=1}^{\infty} n^{-0.05} = \sum_{n=1}^{\infty} \frac{1}{n^{0.05}}$$

4. (10 points)

$$\sum_{n=1}^{\infty} \frac{100^n}{n!}$$

Solution: Converges by the Ratio Test since $\rho = 0 < 1$:

$$\rho = \lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = \lim_{n \to \infty} \frac{100^{n+1}}{(n+1)!} \frac{n!}{100^n} = \lim_{n \to \infty} \frac{100}{n+1} = 0$$

5. (10 points)

$$\sum_{n=0}^{\infty} \frac{1}{\sqrt{9n^2 + 10}}$$

Solution: Diverges by Limit Comparison with $\sum \frac{1}{n}$:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{\sqrt{9n^2 + 10}} \frac{n}{1} = \lim_{n \to \infty} \frac{1}{\sqrt{n^2(9 + 10/n^2)}} \frac{n}{1} = \frac{1}{3}$$

6. (10 points)

$$\sum_{n=1}^{\infty} \frac{3^n}{n}$$

Solution: Diverges by Ratio Test the Ratio Test since $\rho = 3 > 1$:

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{3^{n+1}}{n+1} \frac{n}{3^n} = \lim_{n \to \infty} \frac{3n}{n+1} = 3$$

For #7-10, determine whether the alternating series is absolutely convergent, conditionally convergent, or divergent. Justify your answers:

7. (10 points)

$$\sum_{n=1}^{\infty} \frac{(-10)^n}{9^n}$$

Solution: Diverges as a geometric series with r = -10/9. Alternatively, by the Ratio Test since $\rho = 10/9 > 1$:

$$\rho = \lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = \lim_{n \to \infty} \frac{10^{n+1}}{9^{n+1}} \frac{9^n}{10^n} = \lim_{n \to \infty} \frac{10}{9} = \frac{10}{9}$$

8. (10 points)

$$\sum_{n=1}^{\infty} (-1)^n n^{-5}$$

Solution: Absolutely convergent since $\sum \frac{1}{n^5}$ converges as p-series with p=5>1

9. (10 points)

$$\sum_{n=0}^{\infty} (-1)^n \frac{n^3 + 1}{n^7 + 1}$$

Solution: Absolutely convergent since $\sum \frac{n^3+1}{n^7+1}$ converges by Limit Comparison with $\sum \frac{1}{n^4}$:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^3 + 1}{n^7 + 1} \frac{n^4}{1} = \lim_{n \to \infty} \frac{n^3 (1 + 1/n^3)}{n^7 (1 + 1/n^7)} \frac{n^4}{1} = 1$$

10. (10 points)

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[3]{n}}$$

Solution: Conditionally convergent since $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ diverges (*p*-series with p=1/3<1) but $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[3]{n}}$ converges by the Alternating Series Test: $a_n = \frac{1}{\sqrt[3]{n}}$ is a decreasing sequence and $\lim_{n \to \infty} \frac{1}{\sqrt[3]{n}} = 0$