Mathematics 1575/D630, Spring 2015
Instructor: Suman Ganguli

Name: \qquad

| Question: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 100 |
| Score: | | | | | | | | | | | |

Show all your work and simplify your answers.

For \#1-6, determine whether the infinite series converges or diverges. Justify your answer by using an appropriate test:

1. (10 points)

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}}
$$

Solution: Converges as geometric series with $r=2 / 3<1$. Converges to

$$
\frac{2 / 3}{1-2 / 3}=\frac{2 / 3}{1 / 3}=2
$$

2. (10 points)

$$
\sum_{n=1}^{\infty} \frac{n^{4}}{10 n^{4}+n^{2}+1}
$$

Solution: Diverges by the Divergence Test:

$$
\lim _{n \rightarrow \infty} \frac{7 n^{4}}{10 n^{4}+n^{2}+1}=\lim _{n \rightarrow \infty} \frac{7 n^{4}}{n^{4}\left(10+1 / n^{2}+1 / n^{4}\right)}=\frac{7}{10} \neq 0
$$

3. (10 points)

$$
\sum_{n=1}^{\infty} n^{-0.05}
$$

Solution: Diverges since it's a p-series with $p=0.05<1$:

$$
\sum_{n=1}^{\infty} n^{-0.05}=\sum_{n=1}^{\infty} \frac{1}{n^{0.05}}
$$

4. (10 points)

$$
\sum_{n=1}^{\infty} \frac{100^{n}}{n!}
$$

Solution: Converges by the Ratio Test since $\rho=0<1$:

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{100^{n+1}}{(n+1)!} \frac{n!}{100^{n}}=\lim _{n \rightarrow \infty} \frac{100}{n+1}=0
$$

5. (10 points)

$$
\sum_{n=0}^{\infty} \frac{1}{\sqrt{9 n^{2}+10}}
$$

Solution: Diverges by Limit Comparison with $\sum \frac{1}{n}$:

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{9 n^{2}+10}} \frac{n}{1}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n^{2}\left(9+10 / n^{2}\right)}} \frac{n}{1}=\frac{1}{3}
$$

6. (10 points)

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n}
$$

Solution: Diverges by Ratio Test the Ratio Test since $\rho=3>1$:

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{3^{n+1}}{n+1} \frac{n}{3^{n}}=\lim _{n \rightarrow \infty} \frac{3 n}{n+1}=3
$$

For \#7-10, determine whether the alternating series is absolutely convergent, conditionally convergent, or divergent. Justify your answers:
7. (10 points)

$$
\sum_{n=1}^{\infty} \frac{(-10)^{n}}{9^{n}}
$$

Solution: Diverges as a geometric series with $r=-10 / 9$. Alternatively, by the Ratio Test since $\rho=10 / 9>1$:

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{10^{n+1}}{9^{n+1}} \frac{9^{n}}{10^{n}}=\lim _{n \rightarrow \infty} \frac{10}{9}=\frac{10}{9}
$$

8. (10 points)

$$
\sum_{n=1}^{\infty}(-1)^{n} n^{-5}
$$

Solution: Absolutely convergent since $\sum \frac{1}{n^{5}}$ converges as p-series with $p=5>1$
9. (10 points)

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{3}+1}{n^{7}+1}
$$

Solution: Absolutely convergent since $\sum \frac{n^{3}+1}{n^{7}+1}$ converges by Limit Comparison with $\sum \frac{1}{n^{4}}$:

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{3}+1}{n^{7}+1} \frac{n^{4}}{1}=\lim _{n \rightarrow \infty} \frac{n^{3}\left(1+1 / n^{3}\right)}{n^{7}\left(1+1 / n^{7}\right)} \frac{n^{4}}{1}=1
$$

10. (10 points)

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt[3]{n}}
$$

Solution: Conditionally convergent since $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ diverges (p-series with $p=1 / 3<1$) but $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt[3]{n}}$ converges by the Alternating Series Test: $a_{n}=\frac{1}{\sqrt[3]{n}}$ is a decreasing sequence and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt[3]{n}}=0$

