Mathematics 1575/D630, Spring 2015
Instructor: Suman Ganguli

Exam \#2
April 15, 2015
\qquad

Question		Points	Score
21		25	
2		25	
	3	20	
	4	15	
	5	15	
Total:		100	

Show all your work and simplify your answers.

Recall the trigonometric substitutions that can be used to solve integrals involving certain square root expressions:

If use see	use the sub	so that	and
$\sqrt{a^{2}-x^{2}}$	$x=a \sin \theta$	$d x=a \cos \theta d \theta$	$\sqrt{a^{2}-x^{2}}=a \cos \theta$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan \theta$	$d x=a \sec ^{2} \theta d \theta$	$\sqrt{a^{2}+x^{2}}=a \sec \theta$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec \theta$	$d x=a \sec \theta \tan \theta d \theta$	$\sqrt{x^{2}-a^{2}}=a \tan \theta$

which correspond to the following triangles, respectively:

a

The only trigonometric integral formula that you should for this exam is:

$$
\int \sin ^{2} \theta d \theta=\frac{\theta}{2}-\frac{1}{2} \sin \theta \cos \theta+C
$$

1. (25 points) Solve the following integrals using trigonometric substitutions:
(a)

$$
\int \frac{d x}{x \sqrt{x^{2}-49}}=
$$

Solution: $x=7 \sec \theta, d x=7 \sec \theta \tan \theta d \theta \Longrightarrow$

$$
\int \frac{d x}{x \sqrt{x^{2}-4}}=\int \frac{7 \sec \theta \tan \theta d \theta}{7 \sec \theta(7 \tan \theta)}=\frac{1}{7} \int d \theta=\frac{1}{7} \theta+C=\frac{1}{7} \sec ^{-1}\left(\frac{x}{7}\right)+C
$$

(b)

$$
\int \frac{x^{2}}{\sqrt{16-x^{2}}} d x=
$$

Solution: $x=4 \sin \theta, d x=4 \cos \theta d \theta \Longrightarrow$

$$
\begin{aligned}
& \int \frac{x^{2}}{\sqrt{16-x^{2}}} d x=\int \frac{16 \sin ^{2} \theta}{4 \cos \theta}(4 \cos \theta d \theta)=16 \int \sin ^{2} \theta d \theta=16\left(\frac{\theta}{2}-\frac{1}{2} \sin \theta \cos \theta\right)+C \\
& =8 \theta-8 \sin \theta \cos \theta+C=8 \sin ^{-1}\left(\frac{x}{4}\right)-8\left(\frac{x}{4}\right)\left(\frac{\sqrt{16-x^{2}}}{4}\right)+C \\
& =8 \sin ^{-1}\left(\frac{x}{4}\right)-\frac{x \sqrt{16-x^{2}}}{2}+C
\end{aligned}
$$

2. (25 points) Evaluate each of the following indefinite integrals using the method of partial fractions:
(a)

$$
\int \frac{x-9}{(x+5)(x-2)} d x
$$

Solution:

$$
\begin{aligned}
& \frac{x-9}{(x+5)(x-2)}=\frac{A}{x+5}+\frac{B}{x-2} \Longrightarrow x-9=A(x-2)+B(x+5) \\
& x=-5 \Longrightarrow-14=-7 A \Longrightarrow A=2 \\
& x=2 \Longrightarrow-7=7 B \Longrightarrow B=-1 \\
& \int \frac{x-9}{(x+5)(x-2)} d x=\int \frac{2}{x+5}-\frac{1}{x-2} d x=2 \ln |x+5|-\ln |x-2|+C
\end{aligned}
$$

(b)

$$
\int \frac{2 x^{2}-x+4}{x\left(x^{2}+1\right)} d x
$$

Solution:

$$
\begin{aligned}
& \frac{2 x^{2}-x+4}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1} \\
& 2 x^{2}-x+4=A\left(x^{2}+1\right)+(B x+C) x=(A+B) x^{2}+C x+A \\
& A+B=2, C=-1, A=4 \Longrightarrow A=4, B=-2, C=-1 \\
& \int\left(\frac{4}{x}+\frac{-2 x-1}{x^{2}+1}\right) d x=\int \frac{4}{x} d x-\int \frac{2 x}{x^{2}+1} d x-\int \frac{1}{x^{2}+1} d x=4 \ln |x|-\ln \left(x^{2}+1\right)-\tan ^{-1} x+C
\end{aligned}
$$

3. (20 points) Determine whether the following improper integrals converge or diverge; if it converges, compute its value. Do this by evaluating the limit of a definite integral (for which you will need to find the antiderivative of the integrand).
(a)

$$
\int_{1}^{10} \frac{1}{\sqrt{x-1}} d x
$$

Solution: The integral converges:

$$
\int_{1}^{10} \frac{1}{\sqrt{x-1}} d x=\lim _{R \rightarrow 1+} \int_{R}^{10}(x-1)^{-1 / 2} d x=\lim _{R \rightarrow 1+} 2\left[(x-1)^{1 / 2}\right]_{R}^{10}=2 \sqrt{10-1}-0=2 * 3=6
$$

(b)

$$
\int_{1}^{\infty} \frac{2 x}{1+x^{2}} d x
$$

Solution: The integral diverges:

$$
\lim _{R \rightarrow \infty} \int_{1}^{R} \frac{2 x}{1+x^{2}} d x=\lim _{R \rightarrow \infty}\left[\ln \left(x^{2}+1\right)\right]_{1}^{R}=\lim _{R \rightarrow \infty} \ln \left(R^{2}+1\right)-\ln 2=\infty
$$

4. (15 points) Find the area of the region enclosed by the graphs of $y=x^{3}-2 x^{2}+10$ and $y=3 x^{2}+4 x-10$:

Solution:

$\int_{-2}^{2}\left(x^{3}-2 x^{2}+10\right)-\left(3 x^{2}+4 x-10\right) d x=\int_{-2}^{2}\left(x^{3}-5 x^{2}-4 x+20\right) d x=$
$\left[\frac{x^{4}}{4}-\frac{5 x^{3}}{3}-2 x^{2}+20 x\right]_{-2}^{2}=\left(4-\frac{40}{3}-8+40\right)-\left(4+\frac{40}{3}-8-40\right)=80-\frac{80}{3}=\frac{160}{3}$
5. (15 points) Find the volume of the solid obtained by rotating around the x -axis the region under the graph of $y=e^{x}$ for $0 \leq x \leq 3$:

Hints:

- Set up an integral for the volume using the "disk method." Shown in the figure is such circular disk formed by taking a cross-sectional slice of width $d x$.
- The volume of such a disk is the circular cross-sectional area times $d x$.
- What is the circular cross-sectional area (as a function of x, for $0 \leq x \leq 3$)? That will be the integrand.
- Leave your answer in terms of e and π.

Solution:

$$
V=\int_{0}^{3} \pi\left(e^{x}\right)^{2} d x=\pi \int_{0}^{3} e^{2 x} d x=\frac{\pi}{2}\left[e^{2 x}\right]_{0}^{3}=\frac{\pi}{2}\left(e^{6}-e^{0}\right)=\frac{\pi}{2}\left(e^{6}-1\right)
$$

