Section and page numbers refer to Calculus: Early Transcendentals (2nd Ed) by J. Rogawski:

Section 10.2

Geometric Series (Theorem 2, p552)

If the series is geometric, you can determine convergence or divergence based on the value of r :

- A geometric series converges if $|r|<1$ (i.e., if $-1<r<1$), in which case

$$
\begin{gathered}
\sum_{n=0}^{\infty} c r^{n}=c+c r+c r^{2}+c r^{3}+\ldots=\frac{c}{1-r} \\
\sum_{n=M}^{\infty} c r^{n}=c r^{M}+c r^{M+1}+c r^{M+2}+c r^{M+3}+\ldots=\frac{c r^{M}}{1-r}
\end{gathered}
$$

- A geometric series diverges if $|r| \geq 1$ (i.e., $r \leq-1$ or $r \geq 1$).

Divergence (or n th-Term) Test (Theorem 3, p553)

If the individual terms in the series don't go to zero, then the series diverges:

- An infinite series $\sum a_{n}$ diverges if the nth term a_{n} does not go to zero, i.e., if

$$
\lim _{n \rightarrow \infty} a_{n} \neq 0
$$

Section 10.3: Series with Positive Terms

Integral Test (Theorem 2, p560)

If you can integrate the function that makes up the terms in the series, you can determine convergence or divergence based on the improper integral:

- Suppose $a_{n}=f(n)$, where $f(x)$ is positive, decreasing, and continuous for $x \geq M$.
(i) If the improper integral $\int_{M}^{\infty} f(x) d x$ converges, then the series $\sum_{n=M}^{\infty} a_{n}$ also converges.
(ii) If the improper integral $\int_{M}^{\infty} f(x) d x$ diverges, then the series $\sum_{n=M}^{\infty} a_{n}$ also diverges.

p-series Test (Theorem 3, p561)

You can determine the convergence or divergence of a p-series $\sum_{n=M}^{\infty} \frac{1}{n^{p}}$ based on the value of p :

- If $p>1$, then the series $\sum_{n=M}^{\infty} \frac{1}{n^{p}}$ converges.
- If $p \leq 1$, then the series $\sum_{n=M}^{\infty} \frac{1}{n^{p}}$ diverges.

Limit Comparison Test (Theorem 5, p564)

To test the convergence of an infinite series $\sum a_{n}$, you can sometimes compare it to another series $\sum b_{n}$ (where you know about the convergence of the latter series) by looking at the limit of a_{n} over b_{n} as n goes to infinity:

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

If $L>0$, i.e., the limit is some finite number greater than 0 , then $\sum a_{n}$ has the same convergence/divergence behavior as $\sum b_{n}$, i.e.,
(i) If $\sum b_{n}$ converges, then $\sum a_{n}$ also converges
(ii) If $\sum b_{n}$ diverges, then $\sum a_{n}$ also diverges
(There are additional parts of the Limit Comparison Test given in the text, but focus on this case.)

When does the Limit Comparison Test work on a given $\sum a_{n}$, and what's the

 strategy for choosing the series $\sum b_{n}$?- Many applications of the Limit Comparison Test occur when a_{n} is a ratio involving polynomials and/or roots of polynomials. In such cases, a choice of $b_{n}=\frac{1}{n^{p}}$ for a certain p-value will often work.
- How do you figure out what value of p ? Analyze what happens to a_{n} as n gets big by looking at the leading terms in the polynomials involved.

Example:

- Given $\sum_{n=1}^{\infty} \frac{12 n+5}{7 n^{5}-n^{2}+10}$, look at the leading terms to analyze what happens as n gets big:

$$
a_{n}=\frac{12 n+5}{7 n^{5}-n^{2}+10} \approx \frac{12 n}{7 n^{5}}=\frac{12}{7 n^{4}}
$$

This indicates that we should use a Limit Comparison Test with $b_{n}=\frac{1}{n^{4}}$:

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{12 n+5}{7 n^{5}-n^{2}+10} \frac{n^{4}}{1}=\lim _{n \rightarrow \infty} \frac{n\left(12+\frac{5}{n}\right)}{n^{5}\left(7-\frac{1}{n^{3}}+\frac{10}{n^{5}}\right)} \frac{n^{4}}{1}=\lim _{n \rightarrow \infty} \frac{12+\frac{5}{n}}{7-\frac{1}{n^{3}}+\frac{10}{n^{5}}}=\frac{12}{7}
$$

So $L=\frac{12}{7}>0$ and we know that $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ converges as a p-series with $p>1$. Hence part (ii) of the Limit-Comparison Theorem above applies, and so $\sum_{n=1}^{\infty} \frac{12 n+5}{7 n^{5}-n^{2}+10}$ also converges.

