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Section and page numbers refer to Calculus: Early Transcendentals (2nd Ed) by J. Rogawski:

Section 10.2

Geometric Series (Theorem 2, p552)

If the series is geometric, you can determine convergence or divergence based on the value of r:

• A geometric series converges if |r| < 1 (i.e., if −1 < r < 1), in which case

∞∑
n=0

crn = c + cr + cr2 + cr3 + . . . =
c

1− r

∞∑
n=M

crn = crM + crM+1 + crM+2 + crM+3 + . . . =
crM

1− r

• A geometric series diverges if |r| ≥ 1 (i.e., r ≤ −1 or r ≥ 1).

Divergence (or nth-Term) Test (Theorem 3, p553)

If the individual terms in the series don’t go to zero, then the series diverges:

• An infinite series
∑

an diverges if the nth term an does not go to zero, i.e., if

lim
n→∞

an 6= 0

Section 10.3: Series with Positive Terms

Integral Test (Theorem 2, p560)

If you can integrate the function that makes up the terms in the series, you can determine
convergence or divergence based on the improper integral:

• Suppose an = f(n), where f(x) is positive, decreasing, and continuous for x ≥M .

(i) If the improper integral

∫ ∞

M

f(x) dx converges, then the series

∞∑
n=M

an also converges.

(ii) If the improper integral

∫ ∞

M

f(x) dx diverges, then the series

∞∑
n=M

an also diverges.

p-series Test (Theorem 3, p561)

You can determine the convergence or divergence of a p-series

∞∑
n=M

1

np
based on the value of p:

• If p > 1, then the series

∞∑
n=M

1

np
converges.

• If p ≤ 1, then the series

∞∑
n=M

1

np
diverges.
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Limit Comparison Test (Theorem 5, p564)

To test the convergence of an infinite series
∑

an, you can sometimes compare it to another

series
∑

bn (where you know about the convergence of the latter series) by looking at the limit

of an over bn as n goes to infinity:

L = lim
n→∞

an
bn

If L > 0, i.e., the limit is some finite number greater than 0, then
∑

an has the same conver-

gence/divergence behavior as
∑

bn, i.e.,

(i) If
∑

bn converges, then
∑

an also converges

(ii) If
∑

bn diverges, then
∑

an also diverges

(There are additional parts of the Limit Comparison Test given in the text, but focus on this
case.)

When does the Limit Comparison Test work on a given
∑

an, and what’s the

strategy for choosing the series
∑

bn?

• Many applications of the Limit Comparison Test occur when an is a ratio involving poly-
nomials and/or roots of polynomials. In such cases, a choice of bn = 1

np for a certain
p-value will often work.

• How do you figure out what value of p? Analyze what happens to an as n gets big by
looking at the leading terms in the polynomials involved.

Example:

• Given

∞∑
n=1

12n + 5

7n5 − n2 + 10
, look at the leading terms to analyze what happens as n gets big:

an =
12n + 5

7n5 − n2 + 10
≈ 12n

7n5
=

12

7n4

This indicates that we should use a Limit Comparison Test with bn = 1
n4 :

lim
n→∞

an
bn

= lim
n→∞

12n + 5

7n5 − n2 + 10

n4

1
= lim

n→∞

n(12 + 5
n )

n5(7− 1
n3 + 10

n5 )

n4

1
= lim

n→∞

12 + 5
n

7− 1
n3 + 10

n5

=
12

7

So L = 12
7 > 0 and we know that

∞∑
n=1

1

n4
converges as a p-series with p > 1. Hence part (ii)

of the Limit-Comparison Theorem above applies, and so

∞∑
n=1

12n + 5

7n5 − n2 + 10
also converges.
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