

Building Technology II Assignment D- Stair Design
DATE FALL 2012

PROFESSOR
Friedman

Yale Art Gallery- Basement Level Plan

Yale Art Gallery- Penthouse Level Plan
Professor Friedman

Assignment D

CASE STUDY \#1: Stair Design

DUE: OCT 26, 2012

*1 board required (min):
i. 3D Axon of isolated Stairs
ii. 2D Section through stairs (cutting through path of travel) @ $1 / 2^{\prime \prime}=1^{\prime}-0^{\prime \prime}$
iii. 2D Stair Plan @ 1/2"=1'-0"
iv. 2D/3D detail of stair/ landing connection
v. Stair Calculations

*All views must have a north arrow
*One graphic scale must be included for each unique scale
**All sheets must use the titleblock from Assignment A (change the label to Assignment D and the Dwg number to A-400 and A-401)
*The superstructure should already be built (columns, floors, walls, and roof) in 3D... so now we are going to add the Stairs and elevators

assignment D

CASE STUDY \#1: Stair Design
DUE: OCT 26, 2012

䊩 24 " $\times 36$ " title block that follows studio standards

* emphasis on quality of draftsmanship including:
* layer management
* line weights
* grid dimensions
* standard notations (doors, elevators, stairs_refer to Arch Graphic Standards)

業 column size: $26^{\prime \prime} \times 42^{\prime \prime}$

* submit PDFs and Zip files with all x-refs and rasters included.

- Professor Friedman

Assignment D (Extra Credit)

CASE STUDY \#1: Elevator Design

DUE: OCT 26, 2012
*1 board required:
i. 3D Axon of Elevator System (showing all relevant components)
ii. 2D Section through Elevator Shaft (with elevator cab) @ $1 / 2^{\prime \prime}=1^{\prime}-0^{\prime \prime}$
iii. 2D Elevator Cab Plan @ 1/2"=1'-0"
*All plan views must have a north arrow
*One graphic scale must be included for each unique scale
*All sheets must use the titleblock from Assignment A (change the label to Assignment D and the Dwg number to A-400 and A-401)
*The superstructure should already be built (columns, floors, walls, and roof) in 3D... so now we are going to add the Stairs and elevators

-Building Height $=5$ floors
-Total weight /load of the building (dead + live loads) = 7,500,000 lbs.
-Column size $=3^{\prime}-6^{\prime \prime} \times 2^{\prime}-2^{\prime \prime}$
-Floor to Floor height: 12'-6"
1.Find the Total stair rise. (TS)
2. Divide that by the "Estimated" number of stairs needed. (ENS)
3. That gives you the number of risers needed (although it is a decimal and you can't have a fraction of a stair). (NRN)
4. So, we need to recalculate. Take the TS / NRN =Total Riser Height.
5. Calculate the number and size of Treads using the chart.

Tread (inches) $+2 \times$ riser (inches) $=24$ to 25
 Riser (inches) \times tread (inches) $=72$ to 75

Riser and Tread Dimensions
Riser Tread
inches (mm) inches (mm)
$\left.\begin{array}{rr}5(125) & 15(380) \\ 5-1 / 4(135) & 14-1 / 2(370) \\ 5-1 / 2(140) & 14(355) \\ 5-3 / 4(145) & 13-1 / 2(340) \\ 6(150) & 13(330) \\ 6-1 / 4(160) & 12-1 / 2(320) \\ 6-1 / 2(165) & 12(305) \\ 6-3 / 4(170) & 11-1 / 2(290) \\ 7(180) & 11(280) \\ 7-1 / 4(185) & 10-\frac{1}{2}(265) \\ 7-1 / 2(190) & 10(255) \\ 7-3 / 4(195) & 9-1 / 2(240) \\ 8(205) & 9(230)\end{array}\right]$

These riser and tread dimension are permitted only for private stairways serving an occupancy of less than 10 and stairways leading to an unoccupied roof.

With all stairs, there is always 1 less tread than riser

STAIRS

Figure 21.5 Stair Planning Guidelines

Means of Egress

- § 1003.3.1.4. There should be a landing or floor on each side of a door, and the elevation of the floor or landing should be the same. There are exceptions in residential occupancies for screen doors and at interior stairways to allow doors to swing over landings.
§ 1003.3.1.5. Landings are to have a width not less than that of the stairway or the door, whichever is greater.

Doors in the open position should not reduce the required width or depth of a landing by more than $7^{\prime \prime}$ (178).

- For occupant loads of 50 or more, the door in any position may not reduce the width of the landing to less than half of its required width.
- Landings are to be a minimum of $44^{\prime \prime}(1118)$ in length in the direction of travel, except they may be 36 " (914) long in residential occupancies.

Means of Egress

(axi. Lussibility Guidelines

- itie stairs should also serve as a means of $x=$ zuring an emergency, or lead to an accessible In efyge where people who are unable to use nurs nay remain temporarily in safety to await Eetance during an emergency evacuation.

Nosings

$1-1 / 2^{12}(38)$ maximum protrusion
$1 / 2^{2}(13)$ maximum radius
Risers should be sloped or the undersides of the nosings should have a 60° angle minimum from the horizontal.

Means of Egress

Handrails

§ 1003.3.11 specifies that stairways are to have handrails on each side except in aisle stairs, where a center rail is provided, or in dwellings. Handrails are not required on decks having a single level change between two areas that are equal to or greater than a landing dimension, and in residences where there is only one riser.

Handrails are to be between $34^{\prime \prime}$ and 38 " (864 and 965) above the stair-tread nosing.

- Handrails must extend horizontally for 12 " (305) beyond the top riser of a stairway.
- When handrails do not continue to the handrail of an adjacent flight, they are required to return to a wall or to the walking surface.

Handrails must also continue their slope for the depth of one tread beyond the bottom riser.

- Note that ADAAG requires an additional 12 " (305) horizontal extension at the bottom of a stairway. In no case should the designer use less than the ADAAG dimensions, except where the stairway is in a residence and not on an accessible path.

Handrails

-Professor Friedman

ELEVATORS

Figure 21.1 Traction Elevator

ELEVATORS

NOTE
This is a very specializod application, and consultation with expers is acoised. Tration elevators wath basament
mechine rooms are used in new and existing buildings Where overthead clearance is limited. TRACTION EEEVEATOR WITH
BASEMENT MACHINE ROOM

note
side-mounted counterweights allow an optional rear
intrance door
SIDE-MOUNTED COUNTERWEIGHT

TRACTION ELEVATOR DIMENSIONS (FT-IN)

3500	6.8	$5-3$	8.4	8.1	3.6
4500	$5-8$	$7-10$	8.2	$10-5$	$4-0$

PIT LADDER
BYGENRAL
CONTRACTOR)
CAT
CAR BUFFRRS
(BY GNERA
(ONTRACTOR)
TRACTION ELEVATOR (GELIO)

Chapter 30 governs the design, construction and installation of elevators and other conveying systems, including escalators, moving walks, personnel hoists and materials. We will discuss requirements with significant design impacts.

- Where passenger elevators are required to be accessible per Chapter 11, the elevators are to comply with ICC/ANSI A117.1. Typical elevator cab dimensions and controls for accessible elevators are illustrated.
- Hoistways are to have fire-resistance ratings as required by Chapters 6 and 7 . Doors in elevator shafts, including the elevator car doors, are to comply with the requirements of Chapter 7.
- When four or more cars serve the same portion of a building, they are to be located in two separate hoistways. The purpose of this requirement is to minimize the chance that a fire or other emergency can disable or contaminate with smoke all of the elevators in a bank. Three elevators can be in a single enclosure, but five elevators would need a division between sets of cars.

ELEVATORS

Examples

-Professor Friedman

Examples

-Professor Friedman

Examples

-Professor Friedman

