

Building Technology II

Assignment C- Concrete Slab Systems

DATE

FALL 2012

PROFESSOR

Friedman

We are going to build off of Assignment A & B and take our 3D foundations and extend this to the above-ground portion of our building.

Building off Assignment A & B

Professor Friedman

the concrete slab

CASE STUDIES

Professor Friedman

PAST PROJECTS

Professor Friedman

CASE STUDIES

Professor Friedman

PAST PROJECTS

CASE STUDIES

Professor Friedman

PAST PROJECTS

CALCULATIONS

SLAB DEPTH: Slab Perimeter/180 1856"/180 = 10.3" Slab Depth: 10"

BEAM DEPTH: Span/16 456"/16=28.5" Long Span Depth=2'-4 ½"

CASE STUDIES

Professor Friedman

PAST PROJECTS

Assignment C

CASE STUDY #1: Concrete Slab System

DUE: OCT 12, 2012

- *2 boards required:
 - 3D Axon of building Superstructure
 - ii. 3D Axon of single concrete slab bay
 - iii. 2D Section through a Slab Bay @ 1/2"=1'-0"
 - iv. 2D Structural Plan @ 3/32"=1'-0"
 - v. 2D/3D detail of slab/ column connection
 - vi. Concrete Slab Calculations
- *All views must have a north arrow
- One graphic scale must be included for each unique scale
- *All sheets must use the titleblock from Assignment A (change the label to Assignment C and the Dwg number to A-200 and A-201)
- *You should build the superstructure (columns, floors, walls, and roof in 3D...

assignment C

CASE STUDY #1: Concrete Slab System

DUE: OCT 12, 2012

- 24" x 36" title block that follows studio standards
- emphasis on quality of draftsmanship including:
 - layer management
 - line weights
 - grid dimensions
 - * standard notations (doors, elevators, stairs_refer to Arch Graphic Standards)
- column size: 26" x 42"
- * submit PDFs and Zip files with all x-refs and rasters included.

assignment C

CASE STUDY #1: Concrete Slab System

DUE: OCT 12, 2012

•Class will be broken up into 4 groups:

•Group 1:

One-way Concrete Slabs

•Group 2:

One-way Joist Slab

-Group 3:

2-way Slab and Beam

• **Group 4:**

2-way Waffle Slab

• **Group 5**:

2-way Flat Slab (w/ drop panels)

Professor Friedman

Concrete slabs are plate structures that are reinforced to span either one or with directions of a structural bay. Consult a structural engineer and the wilding code for the required size, spacing, and placement of all reinforcement.

CSI 03200 Concrete Reinforcement CSI 03300 Cast-in-Place Concrete CSI 03310 Structural Concrete

One-Way Slab

BASIC CONCRETE SLAB TYPES

Professor Friedman

BASIC CONCRETE SLAB TYPES

Professor Friedman

4.06 CONCRETE SLABS

BASIC CONCRETE SLAB TYPES

Professor Friedman

BASIC CONCRETE SLAB TYPES

Professor Friedman

BASIC CONCRETE SLAB TYPES

Professor Friedman

BASIC CONCRETE SLAB TYPES

Professor Friedman

4.04 CONCRETE BEAMS

BASIC CONCRETE SLAB TYPES

Professor Friedman

- -Building Height = 5 floors
- -Total weight /load of the building (dead + live loads) = 7,500,000 lbs.
- -Column size = $3'-6" \times 2'-2"$
- -Frost line of New Haven, Connecticut= 3'-6" down

Concrete Slab Calculations:

- 1. Convert Span distance from feet to inches
- 2. Slab Depth (found in Ching book Chapter 4) (Ex: Span/36)
- 3. Calculate Beam depth and Width (if beams are used in your slab) (found in Ching book).
- 4. Calculate Drop panel thickness/ size (if drop panels are used in your slab (found in Ching book)
- 5. Calculate Girder size (if girders are used in your slab (found in Ching book)
- 6. Roof slab Depth (found in Ching book)

CONCRETE SLAB CALCULATIONS

Professor Friedman

Calculations