

We are going to build off of Assignment A and take our 2D columns and extend this information into 3D space.

CASE STUDIES
PAST PROJECTS

A

TOTAL LOAD: 7.5 MILLION POUNDS

B
 STRUCTURE:

Area $=$ Length \times Width
23 COLUMNS @ $3^{\prime}-66^{\prime \prime} \times 2^{\prime}-2^{\prime \prime}=7.58$ SQFT/ COLUMN
23 COLUMNS $\times 7.58$ SQFT/COLUMN $=174.34$ SQFT (GOING INTO FOUNDATION)

A/B:

Total Loads / Structural Area 7.5 MILLION POUNDS / 174.34 SQFT
$=43,019 \mathrm{LBS} /$ SQFT
C:
SEDIMENTARY ROCK ALLOWABLE FOUNDATION PRESSURE $=4,000$ PSFSQ

Total Loads / Allowable Foundation Pressure 7.5 MIL LBS / 4000 PSFSQ $=81.52$ SQFT

Total Area per Footing 81.52

Square root of Total Area Per footing is 9.28 THE FOOTING SHOULD BE 9'-1" X 9'-1" if "SQUARE"

Used Footing CAISSON
Area $=3.14(r)^{2}$
$r^{2}=$ Area / 3.14
$81.52=3.14(\mathrm{R}) \mathrm{SQ}$

SO, RADIUS OF CAISSON $=5.09$

CASE STUDIES

PAST PROJECTS
Professor Friedman

Assignment B

CASE STUDY \#1: Foundation Design

DUE: SEPT 21, 2012

*2 boards required:
i. Foundation Plan @ 3/32" = 1'-0"
ii. Foundation Section @ $1 / 2^{\prime \prime}=1^{\prime}-0^{\prime \prime}$
iii. 3D Foundation Model @ 3/32"=1'-0"
iv. 3D Section Model @ 1/2"=1'-0"
v. Foundation Calculations
*All views must have a north arrow
*One graphic scale must be included for each unique scale
*All sheets must use the titleblock from Assignment A (change the label to Assignment B and the Dwg number to A-200 and A201)
*Site maps to include the following:
i. Scale
ii. Altitude
iii. Latitude and Longitude Coordinates of Case Study Building
iv. Case Study Building Outlined/Highlighted

assignment B

CASE STUDY \#1: Foundation Design
DUE: SEPT 21, 2012

䊩 24 " $\times 36$ " title block that follows studio standards
** emphasis on quality of draftsmanship including:

* layer management
* line weights
* grid dimensions
* standard notations (doors, elevators, stairs_refer to Arch Graphic Standards)

業 column size: $26^{\prime \prime} \times 42^{\prime \prime}$

* submit PDFs and Zip files with all x-refs and rasters included.

- Professor Friedman

assignment B

CASE STUDY \#1: Foundation Design
DUE: SEPT 21, 2012
-Class will be broken up into 4 groups:

-Group 1:

-Sandy Clay: 0-30'
-Clay: 30-60'
*Group 2:
*Organic Peat: 0-40'
*Sand: 40-60'

* Group 3:

Sandy Gravel: 0-40'

Silty Clay: 40-60'

- Group 4:

Organic Peat: 0-60'
Sedimentary Rock: 60'+

TABLE 1804.2

 ALLOWABLE FOUNDATION AND LATERAL PRESSURE| CLASS OF MATERIALS | ALLOWABLE FOUNDATION PRESSURE (psf) ${ }^{\text {d }}$ | LATERAL
 BEARING (psf/f below natural grade) ${ }^{\text {d }}$ | LATERAL SLIDING | |
| :---: | :---: | :---: | :---: | :---: |
| | | | Coefficient of friction ${ }^{2}$ | Resistance (psf) ${ }^{\text {b }}$ |
| 1. Crystalline bedrock | 12,000 | 1,200 | 0.70 | - |
| 2. Sedimentary and foliated rock | 4,000 | 400 | 0.35 | - |
| 3. Sandy gravel and/or gravel (GW and GP) | 3,000 | 200 | 0.35 | - |
| 4. Sand, silty sand, clayey sand, silty gravel and clayey gravel (SW, SP, SM, SC, GM and GC) | 2,000 | 150 | 0.25 | - |
| 5. Clay, sandy clay, silty clay, clayey silt, silt and sandy silt (CL, ML, MH and CH) | 1,500 ${ }^{\text {c }}$ | 100 | - | 130 |

For SI: 1 pound per square foot $=0.0479 \mathrm{kPa}, 1$ pound per square foot per foot $=0.157 \mathrm{kPa} / \mathrm{m}$.
a. Coefficient to be multiplied by the dead load.
b. Lateral sliding resistance value to be multiplied by the contact area, as limited by Section 1804.3.
c. Where the building official determines that in-place soils with an allowable bearing capacity of less than $1,500 \mathrm{psf}$ are likely to be present at the site, the allowable bearing capacity shall be determined by a soils investigation.
d. An increase of one-third is permitted when considering load combinations, including wind or earthquake loads, as permitted by Section 1605.3.2.
-Building Height $=5$ floors
-Total weight /load of the building (dead + live loads) = 7,500,000 lbs.

- Column size $=3^{\prime}-66^{\prime \prime} \times 2^{\prime}-2^{\prime \prime}$
-Frost line of New Haven, Connecticut= $3^{\prime}-6$ " down

Foundation Calculations:

Total Load:

1. Calculate the weight of the building loads on the foundation (given = BL)

Structure Area:

1. Calculate the number of columns distributing the load: (count columns = CO)
2. Calculate the area of each column $(C A=$ length x width $)$:
3. Multiply the number of columns x area of each column to find total load distribution area (TLDA = CA $\times \mathrm{CO}$)
4. Divide the Total building Loads by the load distribution area to find the amount of load needed to spread per square foot (BL/ TLDA = LS)

Soil Bearing Pressure:

1. Look up the Allowable soil bearing pressure from the chart given (ASBP)
2. If the LS > ASBP, then spread footings are needed.

Total Bearing Areal Footing size:

1. Calculate Total Loads (BL) / Allowable soil bearing pressure to find bearing area needed (BA = BL / ASBP)
2. Divide the Bearing Area needed by the \# of Columns to get the size needed per footing/ pile/ caisson. (BA / CO = SPF)
3. Calculate the dimensions of the footing/ pile/ caisson (Cylinder: $\mathrm{SPF}=3.14 \mathrm{R} 2)($ Rectangle $=$ Square root of SPF)
