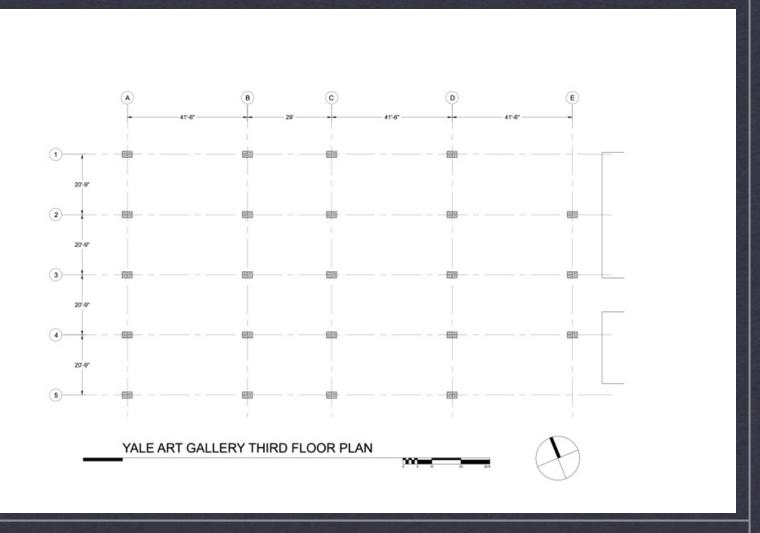


Building Technology II

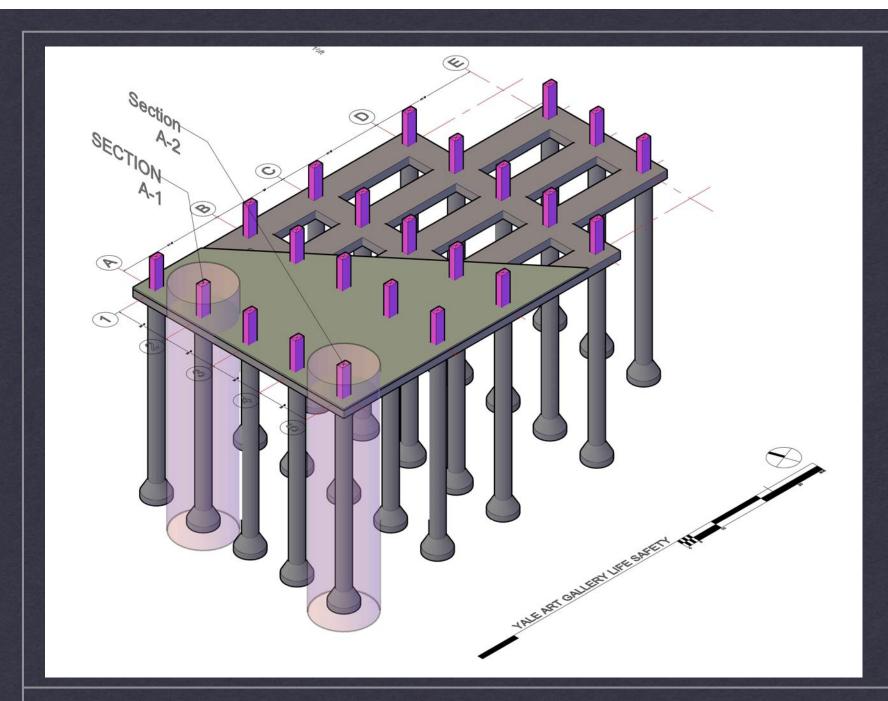
Assignment B- Foundation Design


DATE

FALL 2012

PROFESSOR

Friedman


We are going to build off of Assignment A and take our 2D columns and extend this information into 3D space.

Building off Assignment A

Professor Friedman

the grid

CASE STUDIES

Professor Friedman

PAST PROJECTS

Α

TOTAL LOAD: 7.5 MILLION POUNDS

В

STRUCTURE:

Area = Length x Width 23 COLUMNS @ 3'-6" X 2'-2" = 7.58 SQFT/ COLUMN

23 COLUMNS X 7.58 SQFT/COLUMN=174.34SQFT (GOING INTO FOUNDATION)

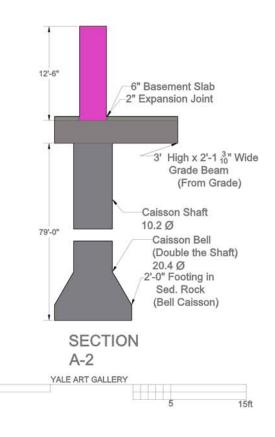
A/B:

Total Loads / Structural Area
7.5 MILLION POUNDS / 174.34 SQFT
= 43,019 LBS/SQFT

C:

SEDIMENTARY ROCK ALLOWABLE FOUNDATION PRESSURE = 4,000 PSFSQ

Total Loads / Allowable Foundation Pressure 7.5 MIL LBS / 4000 PSFSQ = 81.52 SQFT

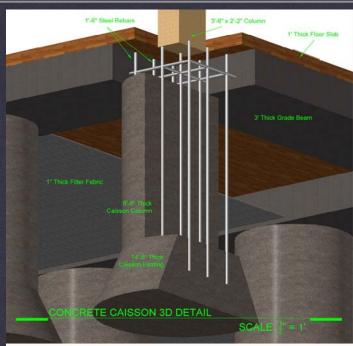

> Total Area per Footing 81.52

Square root of Total Area Per footing is 9.28
THE FOOTING SHOULD BE 9'-1" X 9'-1" if "SQUARE"

Used Footing CAISSON

Area = 3.14 (r)² r²= Area / 3.14 81.52 = 3.14 (R) SQ

SO, RADIUS OF CAISSON = 5.09'


22-0" Deep in Sed. Rock

Rell Calsson)

GALLERA

Professor Friedman

PAST PROJECTS

Footing Dimension Analysis

A) Weight of handing = 7,500,000 line
B) Soil Strength Capacity = 2,000 pd
C) Column Star: 3'-6' x 2'-2' => 3.5' x 2,167'
D) Number of columnic 23

otal area of structural columns: $(3.5)^4(2.167) * (23) = 174.44 \text{ s/}$

 $\frac{d}{d} = \frac{2.961.208}{129.44} = 42,995 \text{ prf} > 2,000 \text{ prf of nnii hearing capac}$ so footings are needed

so footings are needed $F = \frac{A}{\pi} = \frac{7500,000}{7500,000} = 3750 \text{ s.f.}$

 $\frac{e}{D} = \frac{3.750}{23} = 163 \text{ af per footing}$

Shallow Foundation From the state of Foundation V(X) = V(X) =

Foundation Price Analysis

Deep Foundation

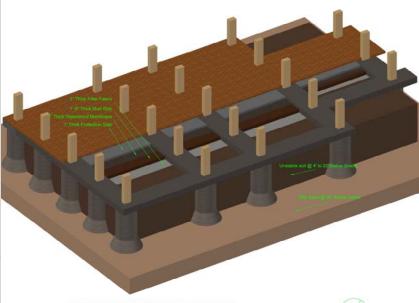
draws of cylindrical calcum = $(rotune\ of\ colores\ colores) + (rotune\ of\ colores\ - arch + a(4.10^2)^2(12.11^2) = 948.cf$ Volume of colores further = $arch + a(4.10^2)^2(12.11^2) = 948.cf$ Volume of colores further = $arch + a(7.2^2)^2(5.2^2) = 033.cf$

Stop 2. of concrete for causes = (volume of cylindrical cassess) x (price of concrete per of) x (number of cas-

Price of concrete for custom = (1,702 ef) + (311.11 per ef) + (23) = 3456,000

otal price of deep foundation - (\$456,000) + (\$107,000) - \$643,000

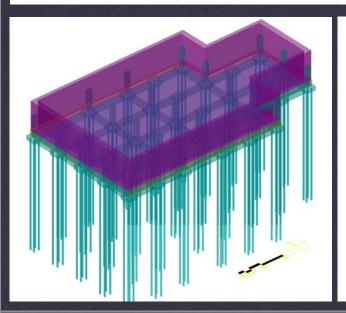
Shallow Foundation

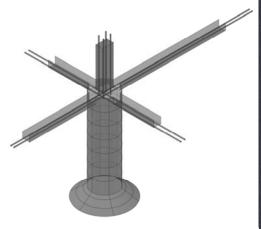

Valume of column footing = (mileme of column span) + (mileme of column footing)
Valume of column span = (volume of column column) = 948 of
Valume of column footing = (area per footing) x (footing depth) = (163 of footing footing = (area per footing) = x (footing depth) = (163 of footing footing = (area per footing) = x (x = 1.11) c, of x = column footing

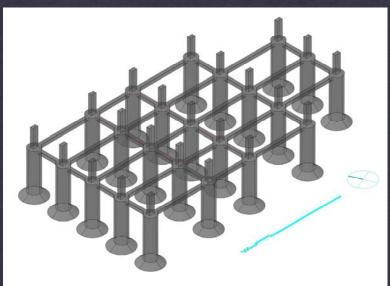
Short 2

Price of concrete for column feating = (valuate of column feating) v (price of concrete per cf) v (wamber of case Price of concrete for column featings = (1.111) + (\$11.11) + (\$2) = \$204,000

Price of excavation = (grass area of basement floor) a (depth) a (price per of of excavation = (12,360 ft) * (20 ft) * (54) = \$991,000


 $Total\ prior\ of\ shallow\ foundation = (5284,000) + (5991,000) = \$1,275,000$

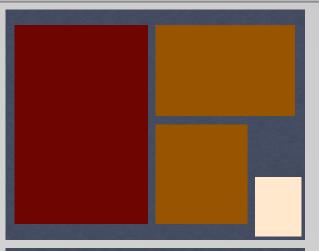


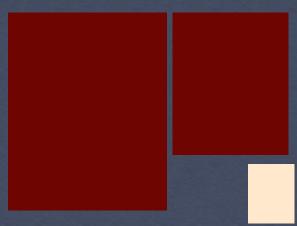

PLAN OBLIQUE FOUNDATION DIAGRAM

SCALE: 1" = 1'

CASE STUDIES

Professor Friedman

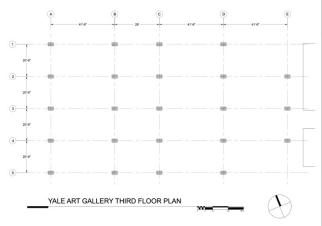

PAST PROJECTS

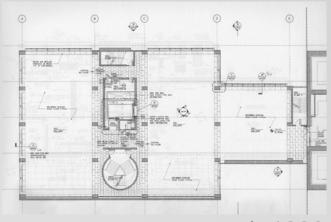

Assignment B

CASE STUDY #1: Foundation Design

DUE: SEPT 21, 2012

- *2 boards required:
 - i. Foundation Plan @ 3/32" = 1'-0"
 - ii. Foundation Section @ 1/2"=1'-0"
 - iii. 3D Foundation Model @ 3/32"=1'-0"
 - iv. 3D Section Model @ 1/2"=1'-0"
 - v. Foundation Calculations
- *All views must have a north arrow
- *One graphic scale must be included for each unique scale
- *All sheets must use the titleblock from Assignment A (change the label to Assignment B and the Dwg number to A-200 and A-201)
- *Site maps to include the following:
 - i. Scale
 - ii. Altitude
 - iii. Latitude and Longitude Coordinates of Case Study Building
 - iv. Case Study Building Outlined/Highlighted


assignment B


CASE STUDY #1: Foundation Design

DUE: SEPT 21, 2012

- * 24" x 36" title block that follows studio standards
- emphasis on quality of draftsmanship including:
 - layer management
 - line weights
 - grid dimensions
 - * standard notations (doors, elevators, stairs_refer to Arch Graphic Standards)
- column size: 26" x 42"
- submit PDFs and Zip files with all x-refs and rasters included.

assignment B

CASE STUDY #1: Foundation Design

DUE: SEPT 21, 2012

•Class will be broken up into 4 groups:

•Group 1:

·Sandy Clay: 0-30'

•Clay: 30-60'

*Group 2:

*Organic Peat: 0-40'

*Sand: 40-60'

Group 3:

Sandy Gravel: 0-40'

Silty Clay: 40-60'

• Group 4:

Organic Peat: 0-60'

Sedimentary Rock: 60'+

Professor Friedman

TABLE 1804.2 ALLOWABLE FOUNDATION AND LATERAL PRESSURE

CLASS OF MATERIALS	ALLOWABLE FOUNDATION PRESSURE (psf) ^d	LATERAL BEARING (psf/f below natural grade) ^d	LATERAL SLIDING	
			Coefficient of friction ^a	Resistance (psf) ^b
Crystalline bedrock	12,000	1,200	0.70	
Sedimentary and foliated rock	4,000	400	0.35	
3. Sandy gravel and/or gravel (GW and GP)	3,000	200	0.35	
 Sand, silty sand, clayey sand, silty gravel and clayey gravel (SW, SP, SM, SC, GM and GC) 	2,000	150	0.25	<u>~</u> 1000
Clay, sandy clay, silty clay, clayey silt, silt and sandy silt (CL, ML, MH and CH)	1,500°	100	u wi <u>g n</u> o ged	130

For SI: 1 pound per square foot = 0.0479 kPa, 1 pound per square foot per foot = 0.157 kPa/m.

- a. Coefficient to be multiplied by the dead load.
- b. Lateral sliding resistance value to be multiplied by the contact area, as limited by Section 1804.3.
- c. Where the building official determines that in-place soils with an allowable bearing capacity of less than 1,500 psf are likely to be present at the site, the allowable bearing capacity shall be determined by a soils investigation.
- d. An increase of one-third is permitted when considering load combinations, including wind or earthquake loads, as permitted by Section 1605.3.2.

FOUNDATION CALCULATIONS

Allowable Pressure arch 1230

- -Building Height = 5 floors
- -Total weight /load of the building (dead + live loads) = 7,500,000 lbs.
- -Column size = $3'-6" \times 2'-2"$
- -Frost line of New Haven, Connecticut= 3'-6" down

Site/ Building Background Info arch 1230

Foundation Calculations:

Total Load:

1. Calculate the weight of the building loads on the foundation (given = BL)

Structure Area:

- 1. Calculate the number of columns distributing the load: (count columns = CO)
- 2. Calculate the area of each column (CA = length x width):
- 3. Multiply the number of columns x area of each column to find total load distribution area (TLDA = CA x CO)
- 4. Divide the Total building Loads by the load distribution area to find the amount of load needed to spread per square foot (BL/ TLDA = LS)

Soil Bearing Pressure:

- 1.Look up the Allowable soil bearing pressure from the chart given (ASBP)
- 2. If the LS > ASBP, then spread footings are needed.

FOUNDATION CALCULATIONS

Calculations

Total Bearing Area/ Footing size:

- 1. Calculate Total Loads (BL) / Allowable soil bearing pressure to find bearing area needed (BA = BL / ASBP)
- 2. Divide the Bearing Area needed by the # of Columns to get the size needed per footing/ pile/caisson. (BA / CO = SPF)
- **3.Calculate the dimensions** of the footing/ pile/ caisson (Cylinder: SPF = 3.14 R₂) (Rectangle = Square root of SPF)

FOUNDATION CALCULATIONS

Allowable Pressure