ARCH 1230 BUILDING TECHNOLOGY II

Professor Friedman

FALL 2012

New York City College of Technology Dept. of Architectural Technology

SUBJECT

building technology II course overview

DATE

Fall 2012

PROFESSOR

Friedman

Professor Friedman

materials + assembly + drawing

Professor Friedman

materials + assembly + drawing

Professor Friedman

materials + assembly + drawing

Professor Friedman

materials + assembly + drawing

form + space + materiality + structure + assembly

Building Technology

Professor Friedman

exploration + investigation

Professor Friedman

working in three dimensions

RELATION OF MATERIAL TO ARCHITECTURE

Professor Friedman

origins of architecture

Professor Friedman

the primitive hut

origins of architecture

Professor Friedman

transformation

RELATION OF MATERIAL TO ARCHITECTURE

Professor Friedman

RELATION OF MATERIAL TO ARCHITECTURE

Professor Friedman

transformation and adaptation

Professor Friedman

post and beam

**structural elements become "detached" from or "stretched" beyond their primary role as a practical structural element, becoming iconic.

tectonics

Professor Friedman

the arch as icon

tectonics

Professor Friedman

tracing the line of forces

tectonics

Professor Friedman

bold structural innovation

**architecture revisits nature frequently searching for pure inspiration.

★Bio-mimicry

Nautilus Half Shell

tectonics

Professor Friedman

transformation

materials

Professor Friedman

the starting point in crafting space

The Structural System in a building, consists of a stable assembly of structural elements designed and constructed to support and transmit applied loads safely to the ground without exceeding the allowable stresses in the members.

Direct load paths

forces on buildings

Professor Friedman

transferring dead loads to the earth

When an opening breaks up the normal vertical load flow to the earth, we need to redistribute it.

The increased load then adds more weight to the remaining members...

forces on buildings

transferring dead loads to the earth

Professor Friedman

forces on buildings

Professor Friedman

transferring dead loads to the earth

To distribute the load, Arches introduce both a downward force and an outward pushing force. These must be counteracted with both an upward force and an inward force.

Note: the shallower the slope of the arch the more outward force is exerted...

forces on buildings

Professor Friedman

path of loads from roof to foundation

Gothic cathedrals are able to achieve great vaulting heights and open interiors by using a system of "Flying buttresses" to contain the outward thrust of the roof and the tall perimeter walls.

forces on buildings

Professor Friedman

path of loads from roof to foundation

forces on buildings

Professor Friedman

path of loads from roof to foundation

COMPRESSION: CRUSHING FORCE

TENSION:

STRETCHING/PULLING

FORCE

BOTH COMPRESSION & TENSION ARE ACTING ON MOST STRUCTURAL ELEMENTS

forces on buildings

Professor Friedman

compression & tension

forces on buildings

Professor Friedman

loads + stresses

*tectonic architecture embraces the force and stress on the material. Entasis is the classic expression of the deformation due to compression.

forces on buildings

Professor Friedman

loads + stresses

FORCES ON BUILDINGS

Professor Friedman

loads + stresses

FORCES ON BUILDINGS

Professor Friedman

loads + stresses

force

Professor Friedman

shape and proportion in response to stresses

summary of properties of Materials

Professor Friedman

CONCRETE (UNREINFORCED)

WORKING STRENGTH

COMPRESSION 1000 - 4000 psi

TENSION 0 psi

DENSITY: 145 pcf

STEEL

WORKING STRENGTH

COMPRESSION 24,000-43,000 psi

TENSION 24,000-43,000 psi

DENSITY: 490 pcf

summary of properties of Materials

Professor Friedman

wrap up

FUNDAMENTAL TO THE PRACTICE OF ARCHITECTURE IS THE IMMERSION IN AND MASTERING OF THE POTENTIAL OF MATERIALS

- * formation of elements of construction governed by required resistance of stresses
- selection of materials is driven by their structural advantages and their aesthetic qualities
- * innovation is rooted in an evolving knowledge and sophisticated manipulation of materials and their assembly
- * knowledge and mastery are pursued through three dimensional investigation and exploration

Class #1: In-Class Assignment

Sketch a floor plan and section of the 3rd floor stairwell (include the landings). Use your hands and feet as reference guides.

