Pg. 109
Find the inverse of matrices.

1. $\mathrm{A}=8(4)-5(6)=2$

$$
A^{-1}=\frac{1}{2}\left[\begin{array}{cc}
4 & -6 \\
-5 & 8
\end{array}\right]=\left[\begin{array}{cc}
2 & -3 \\
5 / 2 & 4
\end{array}\right]
$$

3. $\mathrm{A}=7(-3)-3(-6)=-3$

$$
A^{-1}=-\frac{1}{3}\left[\begin{array}{cc}
-3 & 3 \\
6 & 7
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-2 & -7 / 3
\end{array}\right]
$$

5. Use the inverse found in Exercise 3 to solve the system

$$
\begin{aligned}
& 8 x_{1}+6 x_{2}=2 \\
& 5 x_{1}+4 x_{2}=-1 \\
& x=A^{-1} \mathrm{~b}=\left[\begin{array}{cc}
-3 & 3 \\
6 & 7
\end{array}\right]\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
7 \\
-9
\end{array}\right]
\end{aligned}
$$

7. Let $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ 5 & 12\end{array}\right], \boldsymbol{b}_{1}=\left[\begin{array}{c}-1 \\ 3\end{array}\right], \boldsymbol{b}_{2}=\left[\begin{array}{c}1 \\ -5\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}2 \\ 6\end{array}\right], \boldsymbol{b}_{4}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$.

Find A^{-1}, and use it to solve the four equations

$$
\mathrm{Ax}=\boldsymbol{b}_{1}, \mathrm{Ax}=\boldsymbol{b}_{2}, \mathrm{Ax}=\boldsymbol{b}_{3}, \mathrm{~A} \mathbf{x}=\boldsymbol{b}_{4}
$$

$$
A=1(12)-2(5)=2
$$

$$
A^{-1}=\frac{1}{2}\left[\begin{array}{cc}
12 & -2 \\
-5 & 1
\end{array}\right]=\left[\begin{array}{cc}
6 & -1 \\
-5 / 2 & 1 / 2
\end{array}\right]
$$

$$
\mathrm{A} \mathbf{x}=\boldsymbol{b}_{1}
$$

$$
\left[\begin{array}{cc}
6 & -1 \\
-5 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
6(-1)+(-1) 3 \\
\left(-\frac{5}{2}\right)(-1)+\frac{1}{2}(3)
\end{array}\right]=\left[\begin{array}{c}
-9 \\
4
\end{array}\right]
$$

$$
\mathrm{A} \mathbf{x}=\boldsymbol{b}_{2}
$$

$$
\left[\begin{array}{cc}
6 & -1 \\
-5 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-5
\end{array}\right]=\left[\begin{array}{c}
6(1)+(-1)(-5) \\
\left(-\frac{5}{2}\right)(1)+\frac{1}{2}(-5)
\end{array}\right]=\left[\begin{array}{c}
11 \\
-5
\end{array}\right]
$$

$$
\mathrm{A} \mathbf{x}=\boldsymbol{b}_{3}
$$

$$
\left[\begin{array}{cc}
6 & -1 \\
-5 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
2 \\
6
\end{array}\right]=\left[\begin{array}{c}
6(2)+(-1) 6 \\
\left(-\frac{5}{2}\right) 2+\frac{1}{2}(6)
\end{array}\right]=\left[\begin{array}{c}
6 \\
-2
\end{array}\right]
$$

$$
\begin{aligned}
& A \mathbf{x}=\boldsymbol{b}_{4} \\
& {\left[\begin{array}{cc}
6 & -1 \\
-5 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\left[\begin{array}{l}
6(3)+(-1) 5 \\
\left(-\frac{5}{2}\right) 3+\frac{1}{2}(5)
\end{array}\right]=\left[\begin{array}{l}
13 \\
-5
\end{array}\right]}
\end{aligned}
$$

9. a) True
b)False because the inverse of AB is $B^{-1} A^{-1}$
c)False, its $a d-b c \neq 0$
d) True
e) True
10. Let A be an invertible $n x n$ matrix, and let B be an $n x p$ matrix. Show that the equation $\mathrm{Ax}=\mathrm{B}$ has a unique solution $A^{-1} \mathrm{~B}$.

Replace x in $\mathrm{Ax}=\mathrm{B}$ for $A^{-1} \mathrm{~B}$
$\mathrm{Ax}=\mathrm{A}\left(A^{-1} \mathrm{~B}\right)=\left(A A^{-1}\right) B=I B$ since a matrix multiplied by identity matrix is the matrix itself $I B=B$, therefore $\mathrm{Ax}=\mathrm{B}$
13. Suppose $\mathrm{AB}=\mathrm{AC}$, where B and C are $\mathrm{n} x \mathrm{p}$ matrices and A is invertible. Show that $\mathrm{B}=\mathrm{C}$. Is this true, in general, when A is not invertible?

Since A is invertible to show $B=C$ we can multiply the equation $A B=A C$ by A^{-1} where we get $A^{-1} A B=A^{-1} A C$ $A^{-1} A=I$, so $A^{-1} A B=A^{-1} A C$ can be rewritten as $I B=I C$ which is equivalent to $B=C$

Pg. 101
23. Suppose $\mathrm{CA}=I_{n}$ (the n x n identity matrix). Show that the equation $\mathrm{Ax}=\mathbf{0}$ has only the trivial solution. Explain why A cannot have more columns than rows.

We can multiply the vector \mathbf{x} to $\mathrm{CA}=I_{n}$
$\mathrm{CA} \mathbf{x}=I_{n} \mathbf{x}$ which can be rewritten as $\mathrm{CA} \mathbf{x}=\mathbf{x}$ because \mathbf{x} was being multiplied by an identity matrix. Since $A \mathbf{x}=\mathbf{0}$ we can substitute that in $\mathbf{x}=\mathrm{CA} \mathbf{x}$ and get $\mathbf{C} \mathbf{0}=\mathbf{0}$ which shows that it has only the trivial solution.
This also shows us that A is linearly independent because we only have the trivial solution therefore it cannot have more columns than rows.
25. Suppose A is an $m \times n$ matrix and there exist $n \times m$ matrices C and D such that $\mathrm{CA}=I_{n}$ and $\mathrm{AD}=I_{m}$: Prove that $\mathrm{m}=\mathrm{n}$ and $\mathrm{C}=\mathrm{D}:$ [Hint: Think about the product CAD.]

We know that when A has the only trivial solution, the columns cannot be more than the rows and when A has solutions for every vector solution, the rows cannot be more than the columns. So in this case we can say that the columns equal the rows or $\mathrm{m}=\mathrm{n}$.
Since we are given a hint, the product $\mathrm{CAD}=\mathrm{C}(\mathrm{AD})=\mathrm{C} I_{m}=\mathrm{C}$ and also $\mathrm{CAD}=(\mathrm{CA}) \mathrm{D}=I_{n} \mathrm{D}=\mathrm{D}$, therefore $\mathrm{CAD}=\mathrm{D}=\mathrm{C}$.
27. Let $\mathrm{u}=\left[\begin{array}{c}-3 \\ 2 \\ -5\end{array}\right]$ and $\mathrm{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. Compute $u^{T} \mathrm{v}, v^{T} \mathrm{u}, \mathrm{u} v^{T}, \mathrm{v} u^{T}$ $u^{T} v=\left[\begin{array}{lll}-3 & 2 & -5\end{array}\right] *\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=-3 a+2 b+5 c$ $v^{T} u=\left[\begin{array}{lll}a & b & c\end{array}\right] *\left[\begin{array}{c}-3 \\ 2 \\ -5\end{array}\right]=-3 a+2 b+5 c$
$\mathrm{u} v^{T}=\left[\begin{array}{c}-3 \\ 2 \\ -5\end{array}\right] *\left[\begin{array}{lll}a & b & c\end{array}\right]=\left[\begin{array}{ccc}-3 a & -3 b & -3 c \\ 2 a & 2 b & 2 c \\ -5 a & -5 b & -5 c\end{array}\right]$
$\mathrm{v} u^{T}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] *\left[\begin{array}{lll}-3 & 2 & -5\end{array}\right]=\left[\begin{array}{lll}-3 a & 2 a & -5 a \\ -3 b & 2 b & -5 b \\ -3 c & 2 c & -5 c\end{array}\right]$
33. Prove Theorem 3(d). [Hint: Consider the $j^{\text {th }}$ row of $(A B)^{T}$]

Let A be an $\mathrm{m} x \mathrm{n}$ matrix and B be an n x p matrix. Then, AB is an $\mathrm{m} x \mathrm{p}$ matrix and $(A B)^{T}$ is an $\mathrm{px} m$ matrix. B^{T} is an $\mathrm{p} \times \mathrm{n}$ matrix and A^{T} is an nxm matrix. Therefore $B^{T} A^{T}$ is an pxn matrix.

