Alan Carrasco

Linear Algebra Sections 1594

Pg. 68
31) Let $T: R^{n} \rightarrow R^{m}$ be a linear transformation, and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a linearly dependent set in R^{n}. Explain why the $\operatorname{set}\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{\mathbf{2}}\right), T\left(\mathbf{v}_{\mathbf{3}}\right)\right\}$ is linearly dependent.

In exercises 32-36, column vectors are written as rows, such as $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ and $T(\mathrm{x})$ is written as $T\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$.

If $\{\mathbf{v} 1, \mathbf{v} 2, \mathbf{v} 3\}$ is linearly dependent, then there are $\mathrm{x} 1, \mathrm{x} 2$, x 3 , not all zero, such that $x 1 v 1+x 2 v 2+x 3 v 3=0$. But then
$T(\mathrm{x} 1 \mathrm{v} 1+\mathrm{x} 2 \mathrm{v} 2+\mathrm{x} 3 \mathrm{v} 3)=T(0)$
$T(\times 1 \mathrm{v} 1)+T(\mathrm{x} 2 \mathrm{v} 2)+T(\mathrm{x} 3 \mathrm{v} 3)=0$
$\mathrm{x} 1 \boldsymbol{T}(\mathbf{v} 1)+\mathrm{x} 2 \boldsymbol{T}(\mathbf{v} 2)+\mathrm{x} 3 \boldsymbol{T}(\mathrm{v} 3)=0$
Since not all of $\mathrm{x} 1, \mathrm{x} 2$, x 3 are zero, this shows that $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{\mathbf{2}}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly dependent.
33) Show that the transformation T defined by $T\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(\mathrm{x}_{1}-2 \mathrm{x}_{2}, \mathrm{x}_{1}-3,2 \mathrm{x}_{1}-\right.$ $5 x_{2}$) is not linear.
$\mathrm{T}\left[\begin{array}{l}x 1 \\ x 2\end{array}\right]=\left[\begin{array}{c}x 1-2 x 2 \\ x 1-3 \\ 2 x 1-5 x 2\end{array}\right]$

Therefore, $T=\left[\begin{array}{rr}1 & -2 \\ 1 & 0 \\ 2 & -5\end{array}\right]$

Is not linear because, it does not satisfy one of the properties. If T is linear then $\mathrm{T}(0,0)=(0,0,0)$
35) Let $T: R^{3} \rightarrow R^{3}$ be the transformation that projects each vector $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ onto the plane $\mathrm{x}_{2}=0$, so $T(\mathrm{x})=\left(\mathrm{x}_{1}, 0, \mathrm{x}_{3}\right)$. Show that T is a linear transformation.
$u=\left[\begin{array}{l}u 1 \\ u 2 \\ u 3\end{array}\right], \quad v=\left[\begin{array}{l}v 1 \\ v 2 \\ v 3\end{array}\right]$
Prove that: $T(u+v)=T(u)+T(v)$

$$
\begin{gathered}
T(\mathbf{u}+\mathbf{v})=T\left(\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
u_{3}+v_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
u_{1}+v_{1} \\
0 \\
u_{3}+v_{3}
\end{array}\right]= \\
{\left[\begin{array}{c}
u_{1} \\
0 \\
u_{3}
\end{array}\right]+\left[\begin{array}{c}
v_{1} \\
0 \\
v_{3}
\end{array}\right]=T(\mathbf{u})+T(\mathbf{v}) .}
\end{gathered}
$$

Prove that: $\mathrm{T}(\mathrm{cu})=\mathrm{cT}(\mathrm{u})$

$$
T(c \mathbf{u})=T\left(c\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
c u_{1} \\
c u_{2} \\
c u_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
c u_{1} \\
0 \\
c u_{3}
\end{array}\right]=c\left[\begin{array}{c}
u_{1} \\
0 \\
u_{3}
\end{array}\right]=c T\left(\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\right)=c T(\mathbf{u})
$$

1)

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}, T\left(\mathbf{e}_{1}\right)=(3,1,3,1), \text { and } T\left(\mathbf{e}_{2}\right)=(-5,2,0,0)
$$

$$
\text { where } \mathbf{e}_{1}=(1,0) \text { and } \mathbf{e}_{2}=(0,1)
$$

$$
\begin{aligned}
& \mathrm{T}\left(\mathrm{e}_{1}\right)=\left[\begin{array}{l}
3 \\
1 \\
3 \\
1
\end{array}\right] \quad \mathrm{T}\left(\mathrm{e}_{2}\right)=\left[\begin{array}{c}
-5 \\
2 \\
0 \\
0
\end{array}\right] \\
& {\left[\mathrm{T}\left(\mathrm{e}_{1}\right) \mathrm{T}\left(\mathrm{e}_{2}\right)\right]=\left[\begin{array}{cc}
3 & -5 \\
1 & 2 \\
3 & 0 \\
1 & 0
\end{array}\right]}
\end{aligned}
$$

3) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a vertical shear transformation that maps \mathbf{e}_{1} into $\mathbf{e}_{1}-3 \mathbf{e}_{2}$, but leaves \mathbf{e}_{2} unchanged.

$$
\begin{aligned}
& \mathrm{T}=\left[\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right] \\
& \mathrm{Te}_{1}=\left[\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-3
\end{array}\right]=\mathrm{e}_{1}-3 \mathrm{e}_{2} \\
& \mathrm{Te}_{2}=\left[\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\mathrm{e}_{1}+\mathrm{e}_{2}=\mathrm{e}_{2}
\end{aligned}
$$

5)

$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates points (about the origin) through $\pi / 2$ radians (counterclockwise).
$T: R^{2}-R^{2}$ rotates points (about the origin) through $\frac{\pi}{2}$ radians (counterclockwise).

$$
\left[\begin{array}{cc}
\cos \left(\frac{\pi}{2}\right) & -\sin \left(\frac{\pi}{2}\right) \\
\sin \left(\frac{\pi}{2}\right) & \cos \left(\frac{\pi}{2}\right)
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

7)

$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first rotates points through $-3 \pi / 4$ radians (clockwise) and then reflects points through the horizontal x_{1}-axis. [Hint: $T\left(\mathbf{e}_{1}\right)=(-1 / \sqrt{2}, 1 / \sqrt{2})$.]
\mathbf{e}_{1} goes to the point $(-1 / \sqrt{2},-1 / \sqrt{2})$
e_{2} moves to the point $(1 / \sqrt{2},-1 / \sqrt{2})$
the point $(1 / \sqrt{2}, 1 / \sqrt{2})$ after reflection.

$$
\begin{gathered}
T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \text { and } T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \\
{\left[\begin{array}{cc}
-1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]}
\end{gathered}
$$

15)

In Exercises 15 and 16, fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1}-4 x_{2} \\
x_{1}-x_{3} \\
-x_{2}+3 x_{3}
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
2 & -4 & 0 \\
1 & 0 & -1 \\
0 & -1 & 3
\end{array}\right]}
\end{aligned}
$$

17)

In Exercises $17-20$, show that T is a linear transformation by finding a matrix that implements the mapping. Note that x_{1}, x_{2}, \ldots are not vectors but are entries in vectors.
$T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+2 x_{2}, 0,2 x_{2}+x_{4}, x_{2}-x_{4}\right)$

$$
\begin{aligned}
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
0 \\
2 x_{2}+x_{4} \\
x_{2}-x_{4}
\end{array}\right] & =x_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
0 \\
2 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{lllc}
1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
\end{aligned}
$$

So $T(\mathbf{x})=A \mathbf{x}$ where

$$
A=\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

So T is a linear transform with standard matrix A.

