Jefferson Lara
Mat 2580
Pg 115 \# 13-23 odd
13) When is a square upper triangular matrix invertible?

A square upper triangular matrix is invertible if all entries on the matrix is diagonal are non-zeros.
15) Is it possible for a 4×4 matrix to be invertible when its columns do not span R^{4} ?

No, the IMT'S Statement is then false, because a 4×4 matrix cannot be invertible when its columns do no span \mathbf{R}^{4}.
17) Can a square matrix with two identical columns be invertible?

If \mathbf{A} has two identical columns, then its columns are linearly dependent.
19) If the columns of a 7×7 matrix D are linearly dependent, what can be said about the solutions of $D x=B$?

By the IMT'S statement, thus the equation $D x=b$ has a solution for each b in span of R7.
21) If the equation $C \mathbf{u}=\mathbf{v}$ has more than one solution for some \mathbf{v} in R^{n}, can the columns of the $n \times m$ matrix C span R^{n} ?

The matrix C cannot be inventible (by theorem 5), so the statement of the IMT is false and the columns of C do not span R^{n}.
23) Assume that F is an $n x m$ matrix. If the equation $F x=y$ is inconsistent for some y in R^{n}, what can you say about the equation $\mathrm{Fx}=0$?

Since the IMT statement is false thus the equation $\mathrm{FX}=\mathbf{0}$ has a nontrivial solution.

