Homework: Chapter 1.8

Kaleel Bethel

October 4, 2012

9) Let
$$\mathbf{A} = \begin{bmatrix} 1 & -3 & 5 & -5 \\ 0 & 1 & -3 & 5 \\ 2 & -4 & 4 & -4 \end{bmatrix}$$

Find all x in \mathbb{R}^4 that are mapped into the zero vector by the transformation $x \mapsto Ax$ for the given matrix A.

Solution.

$$\mathbf{Ax} = \begin{bmatrix} 1 & -3 & 5 & -5 \\ 0 & 1 & -3 & 5 \\ 2 & -4 & 4 & -4 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \\ x4 \end{bmatrix} = \begin{bmatrix} x1 - 3(x2) + 5(x3) - 5(x4) \\ 0 + x2 - 3(x3) + 5(x4) \\ 2(x1) - 4(x2) + 4(x3) - 4(x4) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x1 - 3(x2) + 5(x3) - 5(x4) = 0$$

$$0 + x2 - 3(x3) + 5(x4) = 0$$

$$2(x1) - 4(x2) + 4(x3) - 4(x4) = 0$$

$$\begin{bmatrix} 1 & -3 & 5 & -5 & 0 \\ 0 & 1 & -3 & 5 & 0 \\ 2 & -4 & 4 & -4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 5 & -5 & 0 \\ 0 & 1 & -3 & 5 & 0 \\ 0 & 2 & -6 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 5 & -5 & 0 \\ 0 & 1 & -3 & 5 & 0 \\ 0 & 0 & 0 & -4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -4 & 10 & 0 \\ 0 & 1 & -3 & 5 & 0 \\ 0 & 0 & 0 & -4 & 0 \end{bmatrix}$$

x3 is a free variable.

$$x1 - 4(x3) + 10(x4) = 0$$

$$x2 - 3(x3) + 5(x4) = 0$$

$$0 + 0 + 0 - 4(x4) = 0$$

$$x4 = 0$$

$$x1 - 4(x3) + 10(x4) = 0$$

$$x1 - 4(x3) = 0$$

$$x1 = 4(x3)$$

$$x2 - 3(x3) + 5(x4) = 0$$

$$x^2 - 3(x^3) = 0$$

$$x2 = 3(x3)$$

$$X = \begin{bmatrix} 4x3 \\ 3x3 \\ x3 \\ 0 \end{bmatrix} = x3 \begin{bmatrix} 4 \\ 3 \\ 1 \\ 0 \end{bmatrix}$$

11) Let
$$\mathbf{A} = \begin{bmatrix} 1 & -3 & 5 & -5 \\ 0 & 1 & -3 & 5 \\ 2 & -4 & 4 & -4 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$

Is b in the range of the linear transformation $x \mapsto Ax$? Why or why not?

Solution.

$$\begin{bmatrix} 1 & -3 & 5 & -5 & -1 \\ 0 & 1 & -3 & 5 & 1 \\ 2 & -4 & 4 & -4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 5 & -5 & -1 \\ 0 & 1 & -3 & 5 & 1 \\ 0 & 2 & -6 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 5 & -5 & -1 \\ 0 & 1 & -3 & 5 & 1 \\ 0 & 0 & 0 & -4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -4 & 10 & -1 \\ 0 & 1 & -3 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Yes b is in the range of $x \mapsto Ax$, because it is consistent (i.e. there is a solution).

For exercises 13 and 15, use a rectangular coordinate system to plot (u,v), and their images under the given transformation T.

Let
$$\mathbf{u} = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \mathbf{v} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

13) Let
$$\mathbf{T}(\mathbf{x}) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \end{bmatrix}$$

Solution.

T(u) =
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 5(-1) + 2(0) \\ 5(0) + 2(-1) \end{bmatrix} = \begin{bmatrix} -5 \\ -2 \end{bmatrix}$$

$$\mathbf{T(v)} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ 4 \end{bmatrix} = \begin{bmatrix} -2(-1) + 4(0) \\ -2(0) + 4(-1) \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$$

In this case, T flips each vector over the origin.

15) Let
$$\mathbf{T}(\mathbf{x}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \end{bmatrix}$$

Solution.

T(u) =
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 5(0) + 2(1) \\ 5(1) + 2(0) \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

$$\mathbf{T(v)} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -2 \\ 4 \end{bmatrix} = \begin{bmatrix} -2(0) + 4(1) \\ -2(1) + 4(0) \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

In this case, T flips each vector over a like where both the x1 and x2 values are the same.

17) Let
$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$$
 $\mathbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps $\mathbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ to $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ to $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$. Use the fact that T is linear to find the images under T of 2u, 3v, and 2u + 3v.

Solution.

$$T(u) = \begin{bmatrix} x1 & x2 \\ x3 & x4 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} x1(3) + x2(4) \\ x3(3) + x4(4) \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

$$T(2u) = 2T(u) = 2 \begin{bmatrix} x1 & x2 \\ x3 & x4 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = 2 \begin{bmatrix} x1(3) + x2(4) \\ x3(3) + x4(4) \end{bmatrix} = 2 \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 2(4) \\ 2(1) \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$$

$$T(v) = \begin{bmatrix} x1 & x2 \\ x3 & x4 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} x1(3) + x2(3) \\ x3(3) + x4(3) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

$$T(3v) = 3T(v) = 3 \begin{bmatrix} x1 & x2 \\ x3 & x4 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} x1(3) + x2(3) \\ x3(3) + x4(3) \end{bmatrix} = 3 \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3(-1) \\ 3(3) \end{bmatrix} = \begin{bmatrix} -3 \\ 9 \end{bmatrix}$$

$$T(2u + 3v) = 2T(u) + 3T(v) = {8 \brack 2} + {-3 \brack 9} = {5 \brack 11}$$

19) Let
$$\mathbf{e1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $\mathbf{e2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{y1} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ $\mathbf{y2} = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps **e1** to **y1** and **e2** to **y2**. Find the images of $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} x1 \\ x2 \end{bmatrix}$.

T(e1) =
$$\begin{bmatrix} v1 & v2 \\ v3 & v4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} v1(1) + v2(0) \\ v3(1) + v4(0) \end{bmatrix} = \begin{bmatrix} v1 \\ v3 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

$$v1 = 2$$

$$v3 = 5$$

$$\mathbf{T(e2)} = \begin{bmatrix} v1 & v2 \\ v3 & v4 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} v1(0) + v2(1) \\ v3(0) + v4(1) \end{bmatrix} = \begin{bmatrix} v2 \\ v4 \end{bmatrix} = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$$

$$v2 = -1$$

$$v4 = 6$$

$$\mathbf{T} \begin{bmatrix} \mathbf{5} \\ -\mathbf{3} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \end{bmatrix} = \begin{bmatrix} 2(5) - 1(-3) \\ 5(5) + 6(-3) \end{bmatrix} = \begin{bmatrix} 13 \\ 7 \end{bmatrix}$$

$$\mathbf{T} \begin{bmatrix} x\mathbf{1} \\ x\mathbf{2} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x\mathbf{1} \\ x\mathbf{2} \end{bmatrix} = \begin{bmatrix} 2(x\mathbf{1}) - 1(x\mathbf{2}) \\ 5(x\mathbf{1}) + 6(x\mathbf{2}) \end{bmatrix} = \begin{bmatrix} 2x\mathbf{1} - x\mathbf{2} \\ 5x\mathbf{1} + 6x\mathbf{2} \end{bmatrix}$$

- 21) Mark each statement true or false. Justify each answer.
 - A linear transformation is a special kind of function.
 - b. If A is a 3x5 matrix and T is a transformation defined by T(x) = Ax, then the domain of T is R^3 .
 - c. If A is an m x n matrix, then the range of the transformation $x \mapsto Ax$ is R^m .
 - d. Every linear matrix is a transformation matrix.
 - e. A transformation T is linear if and only if T(c1v1 + c2v2) = c1T(v1) + c2T(v2) for all v1 and v2 in the domain of T and for all scalars c1 and c2.

Solutions.

- a. True, like any kind of function a linear transformation is a rule that takes an input and produces a corresponding, unique output.
- b. False. This is because, due to the rules of matrix multiplication, the rightmost factor must have the same number of rows as the leftmost matrix has columns in the leftmost matrix.

- c. True. This is because, due to the rules of matrix multiplication, the multiple must have a size equal to the number of rows in the leftmost matrix by the number of columns in the rightmost.
- d. False. Every transformation matrix is a linear matrix, but not the other way around.
- e. False. A transformation is also linear if T(0) = 0.
- 23) Define f : $R \rightarrow R$ by f(x) = mx + b.
 - a. Show that f is a linear transformation when b = 0.
 - b. Find a property of a linear transformation that is violated when $b \neq 0$.
 - c. Why is f called a linear function?

Solutions.

a. If T is a linear transformation then, according to Property 4 of Linear Transformations, T(cu + dv) = cT(u) + dT(v).

$$f(cu + dv) = m(cu + dv) + 0 = m(cu) + m (dv) = cm(u) + dm(v)$$

Therefore, f is a linear transformation when b = 0.

b. If T is a linear transformation then, according to Property 3 of Linear Transformations, T(0) = 0.

$$f(0) = 0m + b = b$$

Therefore, f is not a linear transformation when $b \neq 0$.

- c. F is a linear function because, when portrayed on a graph, it creates a straight line.
- 25) Given $v \ne 0$ and p in R^n , the line through p in the direction of v has the parametric equation x = p + tv. Show that a linear transformation $T : R^n \to R^n$ maps this line onto another line or onto a single point.

Solution.

$$T(x) = T(p + tv) = T(p) + tT(v)$$

If T(v) = 0, then T(x) = T(p) for all values of x, therefore T(x) maps to a point.

If $T(v) \neq 0$, then T(x) spans a line through T(p) in the direction of the vector T(v).

27) Let u and v be linearly independent vectors in R^3 , and let P be the plane through u, v, and 0. The parametric equation of P is x = su + tv (with s and t in R). Show that a linear Transformation $T: R^3 \to R^3$ maps P onto a plane through 0 or onto a line through 0, or onto just the origin in R^3 . What must be true about T(u) and T(v) for P to be a plane?

Solution.

$$T(x) = T(su + tv) = sT(u) + tT(v)$$

If T(u) and T(v) are linearly independent, then T(x) will span a plane in R^3 .

If T(u) and T(v) are linearly dependent, but are not mapped to the zero vector by T, then T(x) will span a line in R3.

If T maps both u and v onto the zero vector, then T(x) maps to the origin, a single point.

29) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that reflects each point through the x2-axis. Make two sketches that illustrate properties (i) and (ii) of linear transformation.

