Homework

Section 1.9. page 78 Numbers 3-23 (odd)
3. $R^{2} \rightarrow R^{2}$ Vertical shear that maps e_{1} into $e_{1}-3 e_{2}$ and leaves e_{2} unchanged

$$
A=\left[\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathrm{e} 1 & e 2
\end{array}\right]
$$

5. $R^{2} \rightarrow R^{2}$ Rotates counter-clockwise $\pi / 2$.

$$
A=\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]
$$

When $\varphi=\pi / 2$
7. $R^{2} \rightarrow R^{2}$ Rotates through $-3 \pi / 4$ clockwise and reflects points through horizontal x_{1}-axis.
$\left\{\right.$ Hint: $\left.T(e 1)=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\right\}$

$$
A=\left[\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

9. $R^{2} \rightarrow R^{2}$ Reflects through x_{1}-axis and rotates points $\frac{-\pi}{2}$.

$$
A=\left[\begin{array}{cc}
\frac{-\pi}{2} & 0 \\
0 & \frac{\pi}{2}
\end{array}\right]
$$

11. $R^{2} \rightarrow R^{2}$ Reflects through x_{1}-axis then x_{2}-axis. Show T can also be described as linear transform that rotates about origin. What is the angle of rotation?

Angle of rotation $\frac{-2 \pi}{3}$
13. $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$. $\mathrm{T}\left(\mathrm{e}_{1}\right)$ and $\mathrm{T}\left(\mathrm{e}_{2}\right)$ sketch vector $(2,1)$.

15. Fill in:

$$
\left[\begin{array}{ccc}
2 & -4 & 0 \\
& & x 1 \\
1 & 0 & -1][x 2 \\
& 0 & 3
\end{array}\right]=\left[\begin{array}{c}
2 x 1-4 x 2 \\
x 1-x 3 \\
-x 2+3 x 3
\end{array}\right]
$$

17. $T\left(x_{1}, x_{2}, x_{3}\right)=\left(X_{1}-2 x_{2}, 0,2 x_{2}+x_{4}, x_{2}-x_{4}\right)$
$1200 \quad x 1 \quad x 1+2 x 2$
$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]=[x 2]=\left[\begin{array}{ll}0 &]\end{array}\right.$
$0200 \quad x 3 \quad 2 \times 2+x 4$
$010-1 \quad x 4 \quad x 2-x 4$
18. $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-5 x_{2}+4 x_{3}, x_{2}-6 x_{3}\right)$
$\left.\left[\begin{array}{ccc}1 & -5 & 4 \\ 0 & 1 & -6\end{array}\right] \begin{array}{cc}x 1 & x 1-5 x 2+4 x 3 \\ & x 3\end{array}\right]=\left[\begin{array}{cc}x 2-6 x 3\end{array}\right]$
19. $T: R^{2} \rightarrow R^{2}$. $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, 4 x_{1}+5 x_{2}\right)$. Find $T(x)=(3,8)$
$3=x_{1}+x_{2} \quad 8=4 x_{1}+5 x_{2}$
$X_{1}=7 \quad X_{2}=-4$
$\mathrm{T}(\mathrm{x})=\left[\begin{array}{c}x 1+x 2 \\ 4 x 1+5 \times 2\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 4 & 5\end{array}\right]\left[\begin{array}{c}7 \\ -4\end{array}\right]$

Augmented matrix: $\left[\begin{array}{lll}1 & 1 & 3 \\ 4 & 5 & 8\end{array}\right]$ Row reduce $\rightarrow\left[\begin{array}{ccc}1 & 0 & 7 \\ 0 & 1 & -4\end{array}\right]$
23. A linear transform $T: R^{n} \rightarrow R^{m}$ is completely determined by its effect on the columns of the $n x n$ identity matrix.

True (theorem 10)
If $T: R^{2} \rightarrow R^{2}$ rotates vectors about the origin through an angle β, then T is a linear transformation.

True (example 3)
When two linear transformations are performed once on another, the combined effect may not always be a linear transformation.

False
A mapping $T: R^{n} \rightarrow R^{m}$ is into R^{m} if every vector R^{n} maps onto some vector in R^{m}.
False
If A is a 3×2 matrix, then the transformation $x \rightarrow$ cannot be one-to-one
False

