Linear Algebra pg 47 \#1-21 odd
Determine if the system has a nontrivial solution.

1. $\left[\begin{array}{lrll}2 & -5 & 8 & 0 \\ -2 & -7 & 1 & 0 \\ 4 & 2 & 7 & 0\end{array}\right] \sim\left[\begin{array}{ccc}2 & -5 & 8 \\ 0 & -12 & 9 \\ 0 \\ 0 & 12 & -9\end{array}\right] \sim\left[\begin{array}{cccc}2 & -5 & 8 & 0 \\ 0 & -12 & 9 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Yes, this system has nontrivial solutions for each value of X_{3} since X_{3} is a free variable.
3. $\left[\begin{array}{cccc}-3 & 4 & -8 & 0 \\ -2 & 5 & 4 & 0\end{array}\right] \sim\left[\begin{array}{cccc}-3 & 4 & -8 & 0 \\ 0 & 7 / 3 & 2 / 3 & 0\end{array}\right]$

Yes, this system has nontrivial solutions for each value of X_{3} since X_{3} is a free variable.

Write the solution set of the given homogeneous system in parametric vector form.
5. $2 x_{1}+2 x_{2}+4 x_{3}=0$

$$
-4 x_{1}-4 x_{2}-8 x_{3}=0
$$

$$
-3 x_{2}-3 x_{3}=0
$$

$$
\left[\begin{array}{cccc}
2 & 2 & 4 & 0 \\
-4 & -4 & -8 & 0 \\
0 & -3 & -3 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
2 & 2 & 4 & 0 \\
0 & -3 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \mathrm{x}=\begin{aligned}
& x_{1} \\
& x_{2} \\
& x_{3}
\end{aligned}=x_{3}=\begin{gathered}
1 \\
-1 \\
0
\end{gathered}
$$

Describe all solutions of $A x=0$ in parametric vector form, where A is row equivalent to the given matrix.
7. $\left[\begin{array}{llll}1 & 3 & -3 & 7 \\ 0 & 1 & -4 & 5\end{array}\right]$

$$
\mathrm{X}=\begin{aligned}
& x_{1} \\
& x_{2} \\
& x_{3} \\
& x_{4}
\end{aligned} \quad=x_{3} \begin{array}{ccc}
-9 \\
& 4 & \\
& & \\
& 0 & \\
\hline
\end{array}
$$

9. $\left[\begin{array}{crc}3 & -6 & 6 \\ -2 & 4 & -2\end{array}\right] \sim\left[\begin{array}{crc}1 & -2 & 4 \\ -2 & 4 & -2\end{array}\right] \sim\left[\begin{array}{rrr}1 & -2 & 4 \\ 0 & 0 & 6\end{array}\right] \quad \mathrm{X}=\mathrm{X} 2 \begin{aligned} & 2 \\ & 1 \\ & 0\end{aligned}$
10. I couldn't figure out how to make a matrix that big with so many entries, but the variables that is free are x 2 , $\mathrm{X}_{4}, \mathrm{x}_{6}$. The basic variables are $\mathrm{x}_{1}, \mathrm{x}_{3}$, and x_{5}
11. Suppose the solution set of a certain system of linear equations can be described as $\mathbf{x}_{1}=5+4 x_{3}, x_{2}=-2-$ $7 x_{3}$, with x_{3} free. Use vectors to describe this set as a line in R_{3}

I don't understand this question.
15. Describe and compare the solution sets of $x_{1}+5 x_{2}-3 x_{3}=0$ and $x_{1}+5 x_{2}-3 x_{3}=-2$.

From what I think I understood from page 46 , theorem 6 if $A \mathbf{x}=\mathbf{b}$ has a solution, then the solution set is obtained by translating the solution set of $A \mathbf{x}=\mathbf{0}$; meaning that the solution sets are parallel.
17. Follow the method of Example 3 to describe the solutions of the following system in parametric vector form.

$$
\begin{aligned}
2 x_{1}+2 x_{2}+4 x_{3} & =8 \\
-4 x_{1}-4 x_{2}-8 x_{3} & =-16 \\
-3 x_{2}-3 x_{3} & =12
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
2 & 2 & 4 & 8 \\
-4 & -4 & -8 & -16 \\
0 & -3 & -3 & 12
\end{array}\right] \sim\left[\begin{array}{cccc}
2 & 2 & 4 & 8 \\
0 & -3 & -3 & 12 \\
-4 & -4 & -8 & -16
\end{array}\right] \sim\left[\begin{array}{cccc}
2 & 2 & 4 & 8 \\
0 & -3 & -3 & 12 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{cc}
x_{1} & 8 \\
\mathrm{x}=x_{2}=-4 \\
x_{3} & 0
\end{array}
$$

19. Find the parametric equation of the line through a parallel to b.
$\mathbf{a}=\left[\begin{array}{c}-2 \\ 0\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}-5 \\ 3\end{array}\right] \quad \mathrm{x}=\mathrm{a}+\mathrm{by} \mathrm{y}$ is the boundary
20. Find a parametric equation of the line M through p and q.

$$
p=\left[\begin{array}{c}
3 \\
-3
\end{array}\right], \quad q=\left[\begin{array}{l}
4 \\
1
\end{array}\right] \quad x=p+y(q-p)
$$

