In exercise 23 and 24 mark each statement true or false. Justify each answer.
\#23
a. Another notation for the vector $\begin{gathered}-4 \\ 3\end{gathered}$ is $-4 \quad 3$. False since $\begin{gathered}-4 \\ 3\end{gathered}$ is a 2×1 matrix and $-4 \quad 3$ is a 1×2 matrix.
b. The point in the plane corresponding to $\begin{gathered}-2 \\ 5\end{gathered}$ and $\begin{gathered}-5 \\ 2\end{gathered}$ lie on a line through the origin. False

c. An example of a linear combination of vector V_{1} and V_{2} is the vector $1 / 2 V_{1}$. True
d. The solution set of the linear system whose augmented matrix is $\left[a_{1} a_{2} a_{3}\right.$ b] is the same as the solution set of the equation $x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{3}=\mathrm{b}$ True
e. The set Span $\{u, v\}$ is always visualized as a plane through the origin. FALSE
25. Let $\mathrm{A}=\begin{array}{ccc}1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3\end{array}$ and $\mathrm{b}=\begin{gathered}4 \\ 1 \\ -4\end{gathered}$. Denote the columns of A by $a_{1} a_{2} a_{3}$, and let $\mathrm{W}=$ Span $\left\{a_{1} a_{2} a_{3}\right\}$
a. Is b in $\left\{a_{1} a_{2} a_{3}\right\}$? How many vectors are in $\left\{a_{1} a_{2} a_{3}\right\}$?
No, b is not in $a_{1} a_{2} a_{3}$. There are 3 vectors
b. Is b in W ? How many vectors are in W ?
c. Show that a_{1} is in W

$$
a_{1}=1 * a_{1}+0 * a_{2}+0 * a_{3}
$$

27.

A. Mining Company has two mines. One day's operation at mine \#1 produces ore that contain 30 metric tons of copper and 600 kilograms of silver, while one day's operation at mine \#2 produces ore that contains 40 metric tons of copper and 380 kilograms of silver. Let $V_{1}=\begin{gathered}30 \\ 600\end{gathered}$ and $V_{2}=\begin{gathered}40 \\ 380\end{gathered}$ Then V_{1} and V_{2} represent the "output per day" of mine \#1 and mine \#2, respectively
a. What physical interpretation can be given to vector $5 V_{1}$

It means 5 day output of v 1
b. Suppose the company operates mine \#1 for X_{1} day and mine \#2 operate for X_{2} days. Write a vector equation whose solution gives the number of day each mine should operate in order to produce 240 tons of copper and 2824 kilograms of silver. Do not solve the equation.

$$
X_{1} V_{1}+X_{2} V_{2}=\begin{gathered}
240 \\
2824
\end{gathered}
$$

c. Solve equation in B

$$
\begin{gathered}
X_{1} \begin{array}{c}
30 \\
600
\end{array}+X_{2} \begin{array}{c}
40 \\
380
\end{array}=\begin{array}{c}
240 \\
2824
\end{array} \\
X_{1} 30+X_{2} 40=240 \\
X_{1} 600+X_{2} 380=2824 \\
\left(X_{1} 30+X_{2} 40=240\right) \times 20 \\
X_{1} 600+X_{2} 380=2824 \\
X_{1} 600+X_{2} 800=4800 \\
--X_{1} 600+X_{2} 380=2824 \\
X_{2} 420=1976 \\
X_{2}=4.70 \\
X_{1}=1.73
\end{gathered}
$$

Page 40

1. $\begin{array}{ccc}-4 & 2 & 3 \\ 1 & 6 & -2 \\ 0 & 1 & 7\end{array}=$ Undefined
$3 \times 2 \neq 3 \times 1$
2. Use the definition of matrix of Ax to write a the matrix equation as a vector equation, or vice versa.

$$
\begin{aligned}
& \begin{array}{ccccc}
1 & 2 & -3 & 1 & 2 \\
-2 & -3 & 1 & -1 & 1 \\
-1
\end{array}=\begin{array}{c}
-4 \\
1
\end{array} \\
& \text { (1) } 2+-12+(1)-3+(-1)(1) \\
& -22+-3-1+11+(-1)(-1)
\end{aligned}
$$

17. How many rows of A contain a pivot position? Does the equation $A x=b$ have a solution for each b in R4?

$$
\begin{array}{ccccc}
& \begin{array}{ccccc}
1 & 0 & -3 / 2 & 3 \\
-3 R 2+R 1 \rightarrow R 1 & 0 & 1 & -1 / 2 & 2 \\
& 0 & -4 & 2 & -8 \\
& 2 & 0 & 3 & -1
\end{array}, ~
\end{array}
$$

$$
4 R 2+R 3 \rightarrow \text { R3 } \begin{array}{ccccc}
1 & 0 & -3 / 2 & 3 \\
0 & 1 & -1 / 2 & 2 \\
& 0 & 0 & 0 & 0 \\
& 2 & 0 & 3 & -1
\end{array}
$$

$$
\begin{aligned}
& \mathrm{A}=\begin{array}{cccc}
1 & 3 & 0 & 3 \\
-1 & -1 & -1 & 1 \\
0 & -4 & 2 & -8 \\
2 & 0 & 3 & -1
\end{array} \quad \mathrm{~B}=\begin{array}{cccc}
1 & 4 & 1 & 2 \\
0 & 1 & 3 & -4 \\
0 & 2 & 6 & 7 \\
2 & 9 & 5 & -7
\end{array} \\
& \begin{array}{l}
1(\mathrm{R} 1)+\mathrm{R} 2 \rightarrow \mathrm{R} 2
\end{array} \begin{array}{ccccccccc}
1 & 3 & 0 & 3 & & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 2 & -1 & 4 \\
0 & -4 & 2 & -8 \\
0 & 0 & 3 & -1 & & & 0 & 1 & 0 \\
0 & 0 & 1
\end{array} \\
& -2 R 1+R 4 \rightarrow \text { R4 } \quad \begin{array}{cccc}
1 & 3 & 0 & 3 \\
0 & 2 & -1 & 4 \\
0 & -4 & 2 & -8 \\
0 & -6 & 3 & -7
\end{array} \\
& \begin{array}{lcccc}
\\
{ }_{2} \\
2
\end{array} R 2 \rightarrow R 3 \quad \begin{array}{cccc}
1 & 3 & 0 & 3 \\
& 0 & 1 & -\frac{1}{2} \\
2 & 2 \\
0 & -4 & 2 & -8 \\
& 2 & 0 & 3
\end{array}-1
\end{aligned}
$$

$$
\text { 6R2 }+\mathrm{R} 4 \rightarrow \mathrm{R} 4 \begin{array}{cccc}
1 & 0 & -3 / 2 & 3 \\
0 & 1 & -1 / 2 & 2 \\
0 & 0 & 0 & 0 \\
& 2 & 6 & 0
\end{array} 11
$$

19. Can each vector in R4 be written as a linear combination of the columns of the matrix A above? Do the columns of A span R4?
