Sugeiry Peña

Assignment 3

Pages 40 5-15
In exercises 5-8, use the definition of $A \mathbf{x}$ to write the matrix equation as a vector equation, or vice versa.
5) $\left[\begin{array}{rrrr}1 & 2 & -3 & 1 \\ -2 & -3 & 1 & -1\end{array}\right]\left[\begin{array}{r}2 \\ -1 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{r}-4 \\ 1\end{array}\right]$
$2\left[\begin{array}{r}1 \\ -2\end{array}\right]+(-1)\left[\begin{array}{r}2 \\ -3\end{array}\right]+1\left[\begin{array}{r}-3 \\ 1\end{array}\right]+(-1)\left[\begin{array}{r}1 \\ -1\end{array}\right]=$
$\left[\begin{array}{rrrr}(2)+ & (-2)+ & (-3)+ & (-1) \\ (-4)+ & (3)+ & (1)+ & (1)\end{array}\right]=\left[\begin{array}{r}-4 \\ 1\end{array}\right]$
7) $x_{1}\left[\begin{array}{r}4 \\ -1 \\ 7 \\ -4\end{array}\right]+x_{2}\left[\begin{array}{r}-5 \\ 3 \\ -5 \\ 1\end{array}\right]+x_{3}\left[\begin{array}{r}7 \\ -8 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{r}6 \\ -8 \\ 0 \\ -7\end{array}\right]$

$$
\left[\begin{array}{rrr}
4 & -5 & 7 \\
-1 & 3 & -8 \\
7 & -5 & 0 \\
-4 & 1 & 21
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
6 \\
-8 \\
0 \\
-7
\end{array}\right]
$$

9) $5 x_{1}+x_{2}-3 x_{3}=8$

$$
2 x_{2}+4 x_{3}=0
$$

$$
x_{1}\left[\begin{array}{l}
5 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+x_{3}\left[\begin{array}{r}
-3 \\
4
\end{array}\right]=\left[\begin{array}{l}
8 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{rrr}
5 & 1 & -3 \\
0 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
8 \\
0
\end{array}\right]
$$

Given A and \mathbf{b} in Exercises 11 and 12, write the augmented matrix for the linear system that corresponds to the matrix equation $\mathbf{A x}=\mathbf{b}$. Then solve the system and write the solution as a vector.
11) $\quad A=\left[\begin{array}{rrr}1 & 3 & -4 \\ 1 & 5 & 2 \\ -3 & -7 & 6\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-2 \\ 4 \\ 12\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & 3 & -4 & -2 \\
1 & 5 & 2 & 4 \\
-3 & -7 & 6 & 12
\end{array}\right] *\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
3 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 3 & -4 & -2 \\
0 & 2 & 6 & 6 \\
0 & 2 & -6 & 6
\end{array}\right] *\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \sim} \\
& {\left[\begin{array}{lrrr}
1 & 3 & -4 & -2 \\
0 & 1 & 3 & 3 \\
0 & 2 & -6 & 6
\end{array}\right] *\left[\begin{array}{rrr}
1 & -3 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 3 & -13 & -11 \\
0 & 1 & 3 & 3 \\
0 & 0 & 12 & 0
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-11 \\
3 \\
0
\end{array}\right]}
\end{aligned}
$$

13) Let $\mathbf{u}=\left[\begin{array}{l}0 \\ 4 \\ 4\end{array}\right]$ and $A=\left[\begin{array}{rr}3 & -5 \\ -2 & 6 \\ 1 & 1\end{array}\right]$. Is \mathbf{u} in the plane in \mathbb{R}^{3} spanned by the columns of A ? Why or why not?

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
3 & -5 & 0 \\
-2 & 6 & 4 \\
1 & 1 & 4
\end{array}\right] *\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 1 & 4 \\
-2 & 6 & 4 \\
3 & -5 & 0
\end{array}\right] *\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-3 & 1 & 0
\end{array}\right] \sim} \\
& {\left[\begin{array}{rrr}
1 & 1 & 4 \\
0 & 8 & 12 \\
0 & -8 & -12
\end{array}\right] *\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 / 4 & 0 \\
0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 4 \\
0 & 2 & 3 \\
0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Yes, \mathbf{u} is in the plane \mathbb{R}^{3} spanned by the columns of A, because every \mathbf{u} in \mathbb{R}^{3} is a linear combination of the columns of A. Also for each \mathbf{u} in \mathbb{R}^{3}, the equation $A \mathbf{x}=\mathbf{u}$ has a solution.
15) Let $A=\left[\begin{array}{rr}3 & -1 \\ -9 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. Show that the equation $A \mathbf{x}=\mathbf{b}$ does not have a solution for all possible \mathbf{b}, and describe the set of all \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ does have a solution.
$\left[\begin{array}{rrr}3 & -1 & b_{1} \\ -9 & 3 & b_{2}\end{array}\right] *\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right] \sim\left[\begin{array}{rrl}3 & -1 & b_{1} \\ 0 & 0 & 3 b_{1}+b_{2}\end{array}\right]$
$A \mathbf{x}$ doesn't have a solution for all possible \mathbf{b} since $0 \neq 3 b_{1}+b_{2}$ In this case $A \mathbf{x}=\mathbf{b}$ is not consistent for all \mathbf{b} because the echelon form of A has a row of zeros, and $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of all columns of A. If we had a pivot position in A, then $A \mathbf{x}=\mathbf{b}$ would have been consistent, and we would have a solution

Page 60 1, 3
In Exercises 1-4, determine if the vectors are linearly independent. Justify each answer.
1)

$$
\begin{aligned}
& {\left[\begin{array}{l}
5 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
7 \\
2 \\
-6
\end{array}\right],\left[\begin{array}{r}
9 \\
4 \\
-8
\end{array}\right]} \\
& {\left[\begin{array}{rrrr}
5 & 7 & 9 & 0 \\
0 & 2 & 4 & 0 \\
0 & -6 & -8 & 0
\end{array}\right] *\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 3 & 1
\end{array}\right] \sim\left[\begin{array}{llll}
5 & 7 & 9 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 4 & 0
\end{array}\right] *\left[\begin{array}{rrr}
1 & -7 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 / 4
\end{array}\right] \sim} \\
& {\left[\begin{array}{rrrr}
5 & 0 & -5 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] *\left[\begin{array}{rrr}
1 / 5 & 0 & 0 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

Linearly Independent.
This equation has only one trivia solution, and all the columns, except the last, are a pivot position.
3) $\left[\begin{array}{r}2 \\ -3\end{array}\right],\left[\begin{array}{r}-4 \\ 6\end{array}\right]$
$\left[\begin{array}{rrr}2 & -4 & 0 \\ -3 & 6 & 0\end{array}\right] *\left[\begin{array}{rr}1 / 2 & 0 \\ 0 & 1\end{array}\right] \sim\left[\begin{array}{rrr}1 & -2 & 0 \\ -3 & 6 & 0\end{array}\right] *\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right] \sim\left[\begin{array}{rrr}1 & -2 & 0 \\ 0 & 0 & 0\end{array}\right]$
Linearly Dependent.
The row operation on the associated augmented matrix shows that this equation has a nontrivial solution since we have a free variable.
Since x_{2} is a free variable, it gives us many possible linear dependence, therefore, is not linearly independent

