1-23 odd

Problems 1 & 3

Solve equation using elementary row operations on the equations or the augmented matrix. Follow systematic elimination procedure.

1.
$$x_1 + 5x_2 = 7$$

$$-2x_1 - 7x_2 = -5$$

$$\begin{bmatrix} 1 & 5 & 7 \\ -2 & -7 & 5 \end{bmatrix}$$

{Step 1}

$$2(R_1) + R_2 = R_2$$

$$\begin{bmatrix} 1 & 5 & 7 \\ 0 & 3 & 9 \end{bmatrix}$$

{Step 2}

 $1/3(R_2)$

$$\begin{bmatrix} 1 & 5 & 7 \\ 0 & 1 & 3 \end{bmatrix}$$

$$X_2 = 3$$

{Step3}

Substitute back in to get your x_1 value.

$$X_1 + 5(3) = 7$$

$$X1 + 15 = 7$$

$$X_1 = -8$$

Answer: $(x_1, x_2) = (-8,3)$

$$X_1 + 2x_2 = 4$$

$$X_1 - X_2 = 1$$

$$\begin{bmatrix} 1 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$

$$-1(R_1) + R_2 = R_2$$

$$\begin{bmatrix} 1 & 2 & 4 \\ 0 & 3 & 3 \end{bmatrix}$$

$$1/3(R_2)$$

$$\begin{bmatrix} 1 & 5 & 7 \\ 0 & 1 & 1 \end{bmatrix}$$

$$X_2 = 1$$

{Step3}

Substitute x_2 back in to get your x_1 value.

$$X_1 + 2(1) = 4$$

$$X_1 + 2 = 4$$

$$X_1 = 2$$

Answer:
$$(x_1,x_2) = (2,1)$$

• Be careful with calculations :D!

5.

State in words the next two elementary row operations.

$$\begin{bmatrix} 1 & -4 & -3 & 0 & 7 \\ 0 & 1 & 4 & 0 & 6 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -5 \end{bmatrix}$$

Step 2

Multiply R_2 by -4 and add R_3 which then equals your new R_2 , then Multiply R_3 by 3 and add R_1 and your result will be R_1 .

Problems 7 & 9 have been augmented and reduced to row operations. In each case continue the appropriate row operations and describe solution set.
7.

$$\begin{bmatrix} 1 & 7 & 3 & -4 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

There is no solution because in R_3 x_1, x_2 , x_3 carry a zero value and $0 \neq 1$.

9.

$$\begin{bmatrix} 1 & -1 & 0 & 0 & -5 \\ 0 & 1 & -2 & 0 & -7 \\ 0 & 0 & 1 & -3 & 2 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

X₄ is given.

$$X_4 = 4$$

Step 1 Substitute x_4 in R_3 which will give you x_3 .

$$X_3 = 14$$

Step 2 Substitute x_3 in R_2 which will give you x_2 .

$$X_2 = 21$$

Step 3 Substitute x_2 in R_1 which will give you x_1 .

$$X_1 = 16$$

Solve the systems in Exercises 11–14.

11.
$$x_2 + 5x_3 = -4$$

 $x_1 + 4x_2 + 3x_3 = -2$
 $2x_1 + 7x_2 + x_3 = -2$

Answer: Inconsistent

13.
$$x_1 - 3x_3 = 8$$

 $2x_1 + 2x_2 + 9x_3 = 7$
 $x_2 + 5x_3 = -2$

$$\begin{bmatrix} 1 & 0 & -3 & 8 \\ 2 & 2 & 9 & 7 \\ 0 & 1 & 5 & -2 \end{bmatrix}$$

{Step 1}
$$-2(R_1) + R_2 = R_2$$

$$\begin{bmatrix} 1 & 0 & -3 & 8 \\ 0 & 2 & 15 & -9 \\ 0 & 1 & 5 & -2 \end{bmatrix}$$

$$\{\text{Step 2}\}\$$

-2(R₃) + R₂ = R₂

$$\begin{bmatrix} 1 & 0 & -3 & 8 \\ 0 & 0 & 5 & -5 \\ 0 & 1 & 5 & -2 \end{bmatrix}$$

{Step3}

Interchange R₂ with R₃.

$$\begin{bmatrix} 1 & 0 & -3 & 8 \\ 0 & 1 & 5 & -2 \\ 0 & 0 & 5 & -5 \end{bmatrix}$$

{Step4}
$$1/5(R_3) = R_3$$

$$\begin{bmatrix} 1 & 0 & -3 & 8 \\ 0 & 1 & 5 & -2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$X_3 = -1$

{Step 4}

Substitute back in to get your x_2, x_1 , values.

$$X_2 = 3$$
$$X_1 = 5$$

Determine if the systems in Exercises 15 and 16 are consistent. Do not completely solve the systems.

15.
$$x_1 - 6x_2 = 5$$

 $x_2 - 4x_3 + x_4 = 0$
 $-x_1 + 6x_2 + x_3 + 5x_4 = 3$
 $-x_2 + 5x_3 + 4x_4 = 0$

Inconsistent there is no solution.

17. Do the three lines $2x_1 + 3x_2 = -1$, $6x_1 + 5x_2 = 0$, and $2x_1 - 5x_2 = 7$ have a common point of intersection? Explain.

Inconsistent

In Exercises 19–22, determine the value(s) of h such that the matrix is the augmented matrix of a consistent linear system.

19.
$$\begin{bmatrix} 1 & h & 4 \\ 3 & 6 & 8 \end{bmatrix}$$

Answer: h≠2

21.
$$\begin{bmatrix} 1 & 4 & -2 \\ 3 & h & -6 \end{bmatrix}$$

All h.

For Questions 19 & 21 did not have a clue.