Problems 1 \& 3
Solve equation using elementary row operations on the equations or the augmented matrix. Follow systematic elimination procedure.
1.
$x_{1}+5 x_{2}=7$
$-2 x_{1}-7 x_{2}=-5$
$\left[\begin{array}{rrr}1 & 5 & 7 \\ -2 & -7 & 5\end{array}\right]$
\{Step 1\}
$2\left(R_{1}\right)+R_{2}=R_{2}$
$\left[\begin{array}{lll}1 & & 5 \\ 0 & & 7 \\ 0\end{array}\right]$
\{Step 2\}
$1 / 3\left(R_{2}\right)$
$\left[\begin{array}{lll}1 & 5 & 7 \\ 0 & 1 & 3\end{array}\right]$
$X_{2}=3$
\{Step3\}
Substitute back in to get your x_{1} value.
$X_{1}+5(3)=7$
X $1+15=7$
-15 -15
$X_{1}=-8$
Answer: $\left(x_{1}, x_{2}\right)=(-8,3)$
3.
$x_{1}+2 x_{2}=4$
$X_{1}-x_{2}=1$
$\left[\begin{array}{rrr}1 & 2 & 4 \\ 1 & -1 & 1\end{array}\right]$
\{Step 1\}
$-1\left(R_{1}\right)+R_{2}=R_{2}$
$\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 3 & 3\end{array}\right]$
\{Step 2\}
$1 / 3\left(R_{2}\right)$
$\left[\begin{array}{lll}1 & 5 & 7 \\ 0 & 1 & 1\end{array}\right]$
$X_{2}=1$
\{Step3\}
Substitute x_{2} back in to get your x_{1} value.
$X_{1}+2(1)=4$
$X_{1}+2=4$
-2 -2
$X_{1}=2$

Answer: $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=(2,1)$

- Be careful with calculations :D!

5.

State in words the next two elementary row operations.

$$
\left[\begin{array}{ccccc}
1 & -4 & -3 & 0 & 7 \\
0 & 1 & 4 & 0 & 6 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -5
\end{array}\right]
$$

Step 1

Multiply R_{2} by -4 and add R_{3} which then equals your new R_{2}, then Multiply R_{3} by 3 and add R_{1} and your result will be R_{1}.

Problems 7 \& 9 have been augmented and reduced to row operations. In each case continue the appropriate row operations and describe solution set.
7.
$\left[\begin{array}{cccc}1 & 7 & 3 & -4 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$

There is no solution because in $R_{3} \quad x_{1}, x_{2}, x_{3} \quad$ carry a zero value and $0 \neq 1$.
9.
$\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & -5 \\ 0 & 1 & -2 & 0 & -7 \\ 0 & 0 & 1 & -3 & 2 \\ 0 & 0 & 0 & 1 & 4\end{array}\right]$
X_{4} is given.
$X_{4}=4$

Step 1 Substitute x_{4} in R_{3} which will give you x_{3}.
$X_{3}=14$
Step 2 Substitute x_{3} in R_{2} which will give you x_{2}. $X_{2}=21$

Step 3 Substitute x_{2} in R_{1} which will give you x_{1}. $X_{1}=16$

Solve the systems in Exercises 11-14.
11. $x_{2}+5 x_{3}=-4$
$x_{1}+4 x_{2}+3 x_{3}=-2$
$2 x_{1}+7 x_{2}+x_{3}=-2$

Answer: Inconsistent

$$
\text { 13. } \begin{aligned}
x_{1}-3 x_{3} & =8 \\
2 x_{1}+2 x_{2}+9 x_{3} & =7 \\
x_{2}+5 x_{3} & =-2
\end{aligned}
$$

$\left[\begin{array}{cccc}1 & 0 & -3 & 8 \\ 2 & 2 & 9 & 7 \\ 0 & 1 & 5 & -2\end{array}\right]$
\{Step 1\}
$-2\left(R_{1}\right)+R_{2}=R_{2}$
$\left[\begin{array}{cccc}1 & 0 & -3 & 8 \\ 0 & 2 & 15 & -9 \\ 0 & 1 & 5 & -2\end{array}\right]$
\{Step 2\}
$-2\left(R_{3}\right)+R_{2}=R_{2}$
$\left[\begin{array}{cccc}1 & 0 & -3 & 8 \\ 0 & 0 & 5 & -5 \\ 0 & 1 & 5 & -2\end{array}\right]$
\{Step3\}
Interchange R_{2} with R_{3}.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & -3 & 8 \\
0 & 1 & 5 & -2 \\
0 & 0 & 5 & -5
\end{array}\right]} \\
& \{S t e p 4\} \\
& 1 / 5\left(\mathrm{R}_{3}\right)=\mathrm{R}_{3}
\end{aligned}
$$

$\left[\begin{array}{cccc}1 & 0 & -3 & 8 \\ 0 & 1 & 5 & -2 \\ 0 & 0 & 1 & -1\end{array}\right]$
$X_{3}=-1$
\{Step 4\}
Substitute back in to get your $\mathrm{x}_{2}, \mathrm{x}_{1}$, values.
$X_{2}=3$
$X_{1}=5$

Determine if the systems in Exercises 15 and 16 are consistent. Do not completely solve the systems.

$$
\text { 15. } \begin{aligned}
x_{1}-6 x_{2} & =5 \\
x_{2}-4 x_{3}+x_{4} & =0 \\
-x_{1}+6 x_{2}+x_{3}+5 x_{4} & =3 \\
-x_{2}+5 x_{3}+4 x_{4} & =0
\end{aligned}
$$

Inconsistent there is no solution.
17. Do the three lines $2 x_{1}+3 x_{2}=-1,6 x_{1}+5 x_{2}=0$, and $2 x_{1}-5 x_{2}=7$ have a common point of intersection? Explain.

Inconsistent

In Exercises 19-22, determine the value(s) of h such that the matrix is the augmented matrix of a consistent linear system.
19. $\left[\begin{array}{lll}1 & h & 4 \\ 3 & 6 & 8\end{array}\right]$

Answer: $h \neq 2$
21. $\left[\begin{array}{lll}1 & 4 & -2 \\ 3 & h & -6\end{array}\right]$

All h.
For Questions 19 \& 21 did not have a clue.

