Maria Vanegas

Page 21

Exercises from 1-21 odd

1a) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$ Reduced Equelon Form
1b) $\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ Reduced Equelon Form

1c) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ Not in Equelon Form
1d) $\left[\begin{array}{ccccc}1 & 1 & 0 & 1 & 1 \\ 0 & 2 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 4\end{array}\right]$ In Equelon Form
3) $\left[\begin{array}{llll}1 & 2 & 4 & 8 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 2\end{array}\right]$

Multiply row 2 by $-1 / 2$
Multiply row 3 by $-1 / 3$

1	2	4	8
-1	-2	-3	-4
0	0	1	4

$$
\begin{array}{cccc}
1 & 2 & 4 & 8 \\
-1 & -2 & -3 & -4 \\
\hline 0 & 0 & 1 & 4
\end{array}
$$

We get: $\left[\begin{array}{llll}1 & 2 & 4 & 8 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 4\end{array}\right]$ but now add -4 times row 2 to row 1 and add -1 times row 2 to row 3

1	2	4	8
0	0	-4	-16
1	2	0	-8

0	0	1	4
0	0	-1	-4
0	0	0	0

Reduced Equelon Form: $\left[\begin{array}{cccc}1 & 2 & 0 & -8 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0\end{array}\right]$
5) Possible echelon forms on a non-zero 2×2 matrix:

$$
\left[\begin{array}{ll}
\square & * \\
0 & ■
\end{array}\right] \operatorname{or}\left[\begin{array}{ll}
\square & * \\
0 & 0
\end{array}\right] \operatorname{or}\left[\begin{array}{ll}
0 & \square \\
0 & 0
\end{array}\right]
$$

7) $\left[\begin{array}{llll}1 & 3 & 4 & 7 \\ 3 & 9 & 7 & 6\end{array}\right]$

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 3 & 4 & 7 \\
0 & 0 & \frac{5}{3} & 5
\end{array}\right] \leftarrow \text { row } 1+\left(-\frac{1}{3} \cdot \operatorname{row} 2\right) \text {, therefore: }} \\
x_{1}=-3 x_{2}-12+7=-5-3 x_{2} \\
x_{3}=\frac{3}{5} \cdot 5=3 \\
x_{2} \text { is free }
\end{gathered}
$$

9) $\left[\begin{array}{cccc}0 & 1 & -2 & 3 \\ 1 & -3 & 4 & -6\end{array}\right]$ Switch row1 and row $2 \rightarrow\left[\begin{array}{cccc}1 & -3 & 4 & -6 \\ 0 & 1 & -2 & 3\end{array}\right]$

$$
\begin{gathered}
\rightarrow\left[\begin{array}{rrrr}
1 & 0 & -2 & 3 \\
0 & 1 & -2 & 3
\end{array}\right] \leftarrow \operatorname{row} 1+(\text { row } 2 \cdot 3) \text {, therefore: } \\
x_{1}-2 x_{3}=3 ; x_{1}=2 x_{3}+3 \\
x_{2}-2 x_{3}=3 ; x_{2}=2 x_{3}+3 \\
x_{3} \text { is free }
\end{gathered}
$$

11) $\left[\begin{array}{cccc}3 & -2 & 4 & 0 \\ 9 & -6 & 12 & 0 \\ 6 & -4 & 8 & 0\end{array}\right]$

$$
\left[\begin{array}{cccc}
3 & -2 & 4 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \leftarrow \operatorname{row} 2+(-3 \cdot \operatorname{row} 1)
$$

$$
\left[\begin{array}{cccc}
1 & -\frac{2}{3} & \frac{4}{3} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \leftarrow \text { scale row } 1 \text { by } \frac{1}{3}
$$

$$
x_{1}-\frac{2}{3} x_{2}+\frac{4}{3} x_{3}=0 ; x_{1}=\frac{2}{3} x_{2}-\frac{4}{3} x_{3}
$$

$$
x_{2} \text { is free }
$$

$$
x_{3} \text { is free }
$$

13) $\left[\begin{array}{cccccc}1 & -3 & 0 & -1 & 0 & -2 \\ 0 & 1 & 0 & 0 & -4 & 1 \\ 0 & 0 & 0 & 1 & 9 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
1 & 0 & 0 & -1 & -12 & 1 \\
0 & 1 & 0 & 0 & -4 & 1 \\
0 & 0 & 0 & 1 & 9 & 4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{gathered}\left[\begin{array}{c}
\\
{\left[\begin{array}{llllcc}
1 & 0 & 0 & 0 & -3 & 5 \\
0 & 1 & 0 & 0 & -4 & 1 \\
0 & 0 & 0 & 1 & 9 & 4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \leftarrow \text { Row } 1+(3 \cdot \text { row } 2)} \\
x_{1} 1+\text { row } 3 \\
x_{1}-3 x_{5}=5 ; x_{1}=5+3 x_{5} \\
x_{2}-4 x_{5}=1 ; x_{2}=1+4 x_{5} \\
x_{3} \text { is free } \\
x_{4}+9 x_{5}=4 ; x_{4}=4-9 x_{5} \\
x_{5} \text { is free }
\end{array}\right.
$$

15) Both matrices are consistent. For a consistent matrix with a unique solution, the matrix should not have free variables.
a. $\left[\begin{array}{llll}\square & * & * & * \\ 0 & - & * & * \\ 0 & 0 & 0 & 0\end{array}\right] \quad$ In matrix [a] we can observe that x_{3} is a free variable. Matrix [b] has x_{1} as

b. $\left[\right.$| 0 | ■ | $*$ | $*$ | $*$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | | $*$ | $*$ |
| 0 | 0 | | \bullet | 0 |$]$

17) $\left[\begin{array}{ccc}1 & -1 & 4 \\ -2 & 3 & h\end{array}\right]$

1	-1	4
-1	$\frac{3}{2}$	$\frac{h}{2}$
0	$\frac{1}{2}$	4_{2}^{h}

$\left[\begin{array}{ccc}1 & -1 & 4 \\ 0 & \frac{1}{2} & 4_{2}^{h}\end{array}\right] \leftarrow$ row $1+(2 \cdot$ row 2$)$
$\left[\begin{array}{ccc}1 & -1 & 4 \\ 0 & 1 & 4+h\end{array}\right] \leftarrow$ Scale by 2
$\left[\begin{array}{lll}1 & 0 & 8+h \\ 0 & 1 & 4+h\end{array}\right]$
There is not a constant value for h . h may vary in value, reason why we say that h can be any value.
19) $\left[\begin{array}{lll}1 & h & 2 \\ 4 & 8 & k\end{array}\right]$

$$
\begin{gathered}
\begin{array}{ccc}
1 & h & 2 \\
-1 & -2 & -\frac{k}{4} \\
\hline 0 & h-2 & 2-\frac{k}{4} \\
{\left[\begin{array}{ccc}
1 & h & 2 \\
0 & h-2 & 2-\frac{k}{4}
\end{array}\right]}
\end{array} .
\end{gathered}
$$

We can conclude that when $\mathrm{h}=2$ and $\mathrm{k} \neq 8$ the matrix is inconsisted
When $\mathrm{h} \neq 2$ the solution is unique

When $\mathrm{h}=2$ and $\mathrm{k}=8$ there are many solutions

21a) True
21b) False
21c) True
21d) *not sure...
21e) True

