Page 32
Section 1.3 Exercises
11. Given
$a_{1}=\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right], a_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], a_{3}=\left[\begin{array}{c}5 \\ -6 \\ 8\end{array}\right] \& b=\left[\begin{array}{c}2 \\ -1 \\ 6\end{array}\right]$

To find out whether b is a linear combination of $\mathrm{a}_{1}, \mathrm{a}_{2}$ and a_{3}, we check if the vector equation $x_{1} a_{1}+x_{2} a_{2}+$ $x_{3} a_{3}=b$ had a solution or not.
$x_{1}\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]+x_{3}\left[\begin{array}{c}5 \\ -6 \\ 8\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ 6\end{array}\right]$.
Write the above equation in augmented matrix say M
$\boldsymbol{M}=\left[\begin{array}{cccc}1 & 0 & 5 & 2 \\ -2 & 1 & -6 & -1 \\ 0 & 2 & 8 & 6\end{array}\right]$
Using $R_{2} \rightarrow R_{2}+2 R_{1}$
$\boldsymbol{M} \sim\left[\begin{array}{llll}1 & 0 & 5 & 2 \\ 0 & 1 & 4 & 3 \\ 0 & 2 & 8 & 6\end{array}\right]$
Using $R_{3} \rightarrow R 2_{3}+2 R_{2}$
$\boldsymbol{M} \sim\left[\begin{array}{llll}1 & 0 & 5 & 2 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$

The linear system corresponding to M has a solution, so the vector equation (1) has a solution and therefore b is a linear combination of a_{1}, a_{2}, and a_{3}
13.
$\mathrm{A}=\left[\begin{array}{ccc}1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4\end{array}\right], \mathrm{b}=\left[\begin{array}{c}3 \\ -7 \\ -3\end{array}\right]$
Denote the columns of A by a_{1}, a_{2} and a_{3}

$$
\begin{array}{r}
\left.a_{1} a_{2} a_{3} b\right]=\left[\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & \mathrm{~b} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & -4 & 2 & 3 \\
-2 & 3 & 5 & -7 \\
\hline
\end{array}\right]
\end{array}
$$

Using $R_{3} \rightarrow R_{3}+2 R_{1}$
$\left[\begin{array}{cccc}1 & -4 & 2 & 3 \\ 0 & 3 & 5 & -7 \\ -2 & 8 & 0 & 3\end{array}\right]$

The system for this augmented matrix is inconsistent since $0 \neq 3$.
Hence b is not a linear combination of the columns of A.

Page 40
Section 1.4 Exercises:

Q5.
Write a matrix equation as a vector equation using definition of AX.
By the definition of $A \cdot x$
$2\left[\begin{array}{c}1 \\ -2\end{array}\right]+(-1)\left[\begin{array}{c}2 \\ -3\end{array}\right]+1 \cdot\left[\begin{array}{c}-3 \\ 1\end{array}\right]+(-1)\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-4 \\ 1\end{array}\right]$
Therefore
$2\left[\begin{array}{c}1 \\ -2\end{array}\right]-1\left[\begin{array}{c}2 \\ -3\end{array}\right]+1 \cdot\left[\begin{array}{c}-3 \\ 1\end{array}\right]-1\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-4 \\ 1\end{array}\right]$

Q7.
$x_{1}\left[\begin{array}{c}4 \\ -1 \\ 7 \\ -4\end{array}\right]+X_{2}\left[\begin{array}{c}-5 \\ 3 \\ -5 \\ 1\end{array}\right]+x_{3}\left[\begin{array}{c}7 \\ -8 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{c}6 \\ -8 \\ 0 \\ -7\end{array}\right]$

The left side of the equation is linear combination of three vectors. Given system of equations is equivalent to a single matrix equation $A X=B$

Where $\boldsymbol{A}=\left[\begin{array}{ccc}4 & -5 & 7 \\ -1 & 3 & -8 \\ 7 & -5 & 0 \\ -4 & 1 & 2\end{array}\right], X=\left[\begin{array}{l}x 1 \\ x 2 \\ x 3\end{array}\right], B=\left[\begin{array}{c}6 \\ -8 \\ 0 \\ -7\end{array}\right]$
Thus
$A X=B$
$\Rightarrow\left[\begin{array}{ccc}4 & -5 & 7 \\ -1 & 3 & -8 \\ 7 & -5 & 0 \\ -4 & 1 & 2\end{array}\right]\left[\begin{array}{l}x 1 \\ x 2 \\ x 3\end{array}\right]=\left[\begin{array}{c}6 \\ -8 \\ 0 \\ -7\end{array}\right]$

Q9.
$5 x_{1}+x_{2}-3 x_{3}=8$

$$
2 x_{2}+4 x_{3}=0
$$

$x_{1}\left[\begin{array}{l}5 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{c}1 \\ -2\end{array}\right]+x_{3}\left[\begin{array}{l}3 \\ 4\end{array}\right]=\left[\begin{array}{l}8 \\ 0\end{array}\right]$
$\left[\begin{array}{ccc}5 & 1 & 3 \\ 0 & -2 & 4\end{array}\right]\left[\begin{array}{l}x 1 \\ x 2\end{array}\right]=\left[\begin{array}{l}8 \\ 0\end{array}\right]$

