Paul Pierre-Louis

Homework \# 2

Page 40 \# 11
The problem asks to write the augmented matrix for the linear system $\mathrm{Ax}=\mathrm{b}$ and then solve the system and write the solution as a vector.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 3 & -4 \\
1 & 5 & 2 \\
-3 & -7 & 6
\end{array}\right], b=\left[\begin{array}{c}
-2 \\
4 \\
12
\end{array}\right] \\
& \text { so, }\left[\begin{array}{cccc}
1 & 3 & -4 & -2 \\
1 & 5 & 2 & 4 \\
-3 & -7 & 6 & 12
\end{array}\right], x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-11 \\
3 \\
0
\end{array}\right]
\end{aligned}
$$

\# 13. Yes \mathbf{u} is in the plane spanned by the colums of A because when you take a look inside the parallelogram \mathbf{u} is included.

Page 60 \# 1:
The vector: $\left[\begin{array}{c}5 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}7 \\ 2 \\ -6\end{array}\right],\left[\begin{array}{l}9 \\ 4 \\ 8\end{array}\right]$ is lenear independent because neither of the vectors is a mulptiple of the other and the arrows are not coplanar.

Page 60 \# 3:

The vector: $\left[\begin{array}{c}2 \\ -2\end{array}\right],\left[\begin{array}{c}-4 \\ 6\end{array}\right]$ is lenear dependent because the two vector are certainly multiple of one other and there's a solution.

