Page 40
Section 1.4 Exercises
Q5. Write the matrix equation as a vector equation using definition of $A x$.

$$
\left[\begin{array}{cccc}
1 & 2 & -3 & 1 \\
-2 & -3 & 1 & -1
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-4 \\
1
\end{array}\right]
$$

By the definition of $A x$

$$
2\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+(-1) \cdot\left[\begin{array}{c}
2 \\
-3
\end{array}\right]+1 \cdot\left[\begin{array}{c}
-3 \\
1
\end{array}\right]+(-1) \cdot\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-4 \\
1
\end{array}\right]
$$

Therefore
$2\left[\begin{array}{c}1 \\ -2\end{array}\right]-1 \cdot\left[\begin{array}{c}2 \\ -3\end{array}\right]+1 \cdot\left[\begin{array}{c}-3 \\ 1\end{array}\right]-1 \cdot\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-4 \\ 1\end{array}\right]$

Q7.

$$
x_{1}\left[\begin{array}{c}
4 \\
-1 \\
7 \\
-4
\end{array}\right]+X_{2}\left[\begin{array}{c}
-5 \\
3 \\
-5 \\
1
\end{array}\right]+X_{3}\left[\begin{array}{c}
7 \\
-8 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
6 \\
-8 \\
0 \\
-7
\end{array}\right]
$$

The left side of the equation is linear combination of three vectors. Given system of equations is equivalent to an angle matrix equation $A X=B$
Where $A=\left[\begin{array}{ccc}4 & -5 & 7 \\ -1 & 3 & -8 \\ 7 & -5 & 0 \\ -4 & 1 & 2\end{array}\right], X=\left[\begin{array}{l}x 1 \\ x 2 \\ x 3\end{array}\right], B=\left[\begin{array}{c}6 \\ -8 \\ 0 \\ -7\end{array}\right]$

Thus
$A X=B$

$$
\left[\begin{array}{ccc}
4 & -5 & 7 \\
-1 & 3 & -8 \\
7 & -5 & 0 \\
-4 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x 1 \\
x 2 \\
x 3
\end{array}\right]=\left[\begin{array}{c}
6 \\
-8 \\
0 \\
-7
\end{array}\right]
$$

Q9.

$$
\begin{aligned}
& 5 x_{1}+x_{2}-3 x_{3}=8 \\
& 2 x_{2}+4 x_{3}=0 \\
& x_{1}\left[\begin{array}{l}
5 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
4
\end{array}\right]=\left[\begin{array}{l}
8 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
5 & 1 & -3 \\
0 & 2 & 4
\end{array}\right]\left[\begin{array}{c}
x 1 \\
x 2 \\
x 3
\end{array}\right]=\left[\begin{array}{l}
8 \\
0
\end{array}\right]}
\end{aligned}
$$

