Calvin Lo

Assignment \#2 pg 10, 1-10 odd
Solve each system in Exercises 1-4 by using elementary row operations on the equations or on the augmented matrix. Follow the systematic elimination procedure described in this section.
\#1 $\quad x_{1}+5 x_{2}=7$
$\left[\begin{array}{ccc}1 & 5 & 7 \\ -2 & -7 & -5\end{array}\right]$
$-2 x_{1}-7 x_{2}=-5$
$2\left(\right.$ Row $\left._{1}\right)+$ Row $_{2}=$ New Row ${ }_{2}$

$$
\left[\begin{array}{ccc}
1 & 5 & 7 \\
2 * 1+(-2) & 2 * 5+(-7) & 2 * 7+(-5)
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 7 \\
0 & 3 & 9
\end{array}\right]
$$

Multiply new row 2 by $1 / 3$ to get the coefficient 1 for x_{2} :
$-5\left(\right.$ Row $\left._{2}\right)+$ Row $_{1}=$ New Row ${ }_{1}$
$\left[\begin{array}{ccc}-5 * 0+1 & -5 * 1+5 & -5 * 3+7 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & -8 \\ 0 & 1 & 3\end{array}\right]$

Answer: $x_{1}=3, x_{2}=-8$

Find the point $\left(x_{1}, x_{2}\right)$ that lies on the line $x_{1}+2 x_{2}=4$ and on the line $x_{1}-x_{2}=1$. See the figure.

$$
\left.\left.\begin{array}{l}
x_{1}-x_{2}=1 \\
x_{1}+2 x_{2}=4 \\
-1\left(\text { Row }_{1}\right)+\text { Row }_{2}=\text { New Row } \\
2
\end{array}\right] \begin{array}{ccc}
1 & -1 & 1 \\
1 & 2 & 4
\end{array}\right] .
$$

Multiply row 2 by $1 / 3$ to get the coefficient of x_{2} to 1
$\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & 1\end{array}\right]$

1 $\left(\right.$ Row $\left._{2}\right)+$ Row $_{1}=$ New Row $_{1}$
$\left[\begin{array}{ccc}1(0)+1 & 1(1)+-1 & 1(1)+1 \\ 0 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1\end{array}\right]$

Answer: $x_{1}=2, x_{2}=1$
\# 5

Consider each matrix in Exercises 5 and 6 as the augmented matrix of a linear system. State in words the next two elementary row operations that should be performed in the process of solving the system.
5. $\left[\begin{array}{rrrrr}1 & -4 & -3 & 0 & 7 \\ 0 & 1 & 4 & 0 & 6 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -5\end{array}\right]$

Answer: Multiply Row 3 by (-4) and replace row 2 with that. Then multiply Row 3 by (3 and replace Row 1 with that.
\#7

In Exercises 7-10, the augmented matrix of a linear system has been reduced by row operations to the form shown. In each case, continue the appropriate row operations and describe the solution set of the original system.
$\left[\begin{array}{rrrr}1 & 7 & 3 & -4 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$

Answer: The solution set is empty.
\#9
9. $\left[\begin{array}{rrrrr}1 & -1 & 0 & 0 & -5 \\ 0 & 1 & -2 & 0 & -7 \\ 0 & 0 & 1 & -3 & 2 \\ 0 & 0 & 0 & 1 & 4\end{array}\right]$

