Victor Ng - 9/11/2012

Determine if the systems in Exercises 15 and 16 are consistent. Do not completely solve the systems.
15. $x_{1}-6 x_{2}=5$

$$
\begin{aligned}
x_{2}-4 x_{3}+x_{4} & =0 \\
-x_{1}+6 x_{2}+x_{3}+5 x_{4} & =3 \\
-x_{2}+5 x_{3}+4 x_{4} & =0
\end{aligned}
$$

Augmented Matrix

$$
\left[\begin{array}{cccc:c}
1 & -6 & 0 & 0 & 5 \\
0 & 1 & -4 & 1 & 0 \\
-1 & 6 & 1 & 5 & 3 \\
0 & -1 & 5 & 4 & 0
\end{array}\right] \mathrm{R}_{3}-\left(-1 * \mathrm{R}_{1}\right)=\mathrm{R}_{3}\left[\begin{array}{cccc:c}
1 & -6 & 0 & 0 & 5 \\
0 & 1 & -4 & 1 & 0 \\
0 & 0 & 1 & 5 & 8 \\
0 & -1 & 5 & 4 & 0
\end{array}\right]
$$

17. Do the three lines $2 x_{1}+3 x_{2}=-1,6 x_{1}+5 x_{2}=0$, and $2 x_{1}-5 x_{2}=7$ have a common point of intersection? Explain.
$2 x_{1}+3 x_{2}=-1$
$6 x_{1}+5 x_{2}=0$
$2 x_{1}-5 x_{2}=7$

In Exercises 19-22, determine the value(s) of h such that the matrix is the augmented matrix of a consistent linear system.
19. $\left[\begin{array}{lll}1 & h & 4 \\ 3 & 6 & 8\end{array}\right]$
21. $\left[\begin{array}{lll}1 & 4 & -2 \\ 3 & h & -6\end{array}\right]$
23. a. Every elementary row operation is reversible.
b. A 5×6 matrix has six rows.
c. The solution set of a linear system involving variables x_{1}, \ldots, x_{n} is a list of numbers $\left(s_{1}, \ldots, s_{n}\right)$ that makes each equation in the system a true statement when the values s_{1}, \ldots, s_{n} are substituted for x_{1}, \ldots, x_{n}, respectively.
d. Two fundamental questions about a linear system involve existence and uniqueness.
A) True.
B) False, A 5×6 matrix has 5 rows and 6 columns.
C) False, describes only one element but not entire solution set.
D) True.
25. Find an equation involving g, h, and k that makes this augmented matrix correspond to a consistent system:
$\left[\begin{array}{rrrr}1 & -4 & 7 & g \\ 0 & 3 & -5 & h \\ -2 & 5 & -9 & k\end{array}\right]$
$\mathrm{K}-2 \mathrm{G}+\mathrm{H}=0$
For values of Row 1 : (-2) $-(-2 * 1)+0=0$

$$
-2+2=0
$$

$0=0$ Therefore system is consistent.
27. Suppose a, b, c, and d are constants such that a is not zero and the system below is consistent for all possible values of f and g. What can you say about the numbers a, b, c, and d ? Justify your answer.

$$
\begin{aligned}
& a x_{1}+b x_{2}=f \\
& c x_{1}+d x_{2}=g
\end{aligned}
$$

In Exercises 29-32, find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.
29. $\left[\begin{array}{rrr}0 & -2 & 5 \\ 1 & 3 & -5 \\ 3 & -1 & 6\end{array}\right],\left[\begin{array}{rrr}3 & -1 & 6 \\ 1 & 3 & -5 \\ 0 & -2 & 5\end{array}\right]$
31. $\left[\begin{array}{rrrr}1 & -2 & 1 & 0 \\ 0 & 5 & -2 & 8 \\ 4 & -1 & 3 & -6\end{array}\right],\left[\begin{array}{rrrr}1 & -2 & 1 & 0 \\ 0 & 5 & -2 & 8 \\ 0 & 7 & -1 & -6\end{array}\right]$

29) Swap R_{3} with R_{1}

$$
\left[\begin{array}{rrr}
0 & -2 & 5 \\
1 & 3 & -5 \\
3 & -1 & 6
\end{array}\right] \curvearrowright\left[\begin{array}{rrr}
3 & -1 & 6 \\
1 & 3 & -5 \\
0 & -2 & 5
\end{array}\right]
$$

31) Replace \mathbf{R}_{3} with $\left(\mathbf{R}_{3}+\left(-4 * R_{1}\right)\right)$.
$\left[\begin{array}{cccc}1 & -2 & 1 & 0 \\ 0 & 5 & -2 & 8 \\ 4+1(-4) & 3+1(-4) & 3+1(-4) & -6+0(-4)\end{array}\right]$

An important concern in the study of heat transfer is to determine the steady-state temperature distribution of a thin plate when the temperature around the boundary is known. Assume the plate shown in the figure represents a cross section of a metal beam, with negligible heat flow in the direction perpendicular to the plate. Let T_{1}, \ldots, T_{4} denote the temperatures at the four interior nodes of the mesh in the figure. The temperature at a node is approximately equal to the average of the four nearest nodes-to the left, above, to the right, and below. ${ }^{3}$ For instance,
$T_{1}=\left(10+20+T_{2}+T_{4}\right) / 4$, or $4 T_{1}-T_{2}-T_{4}=30$

33. Write a system of four equations whose solution gives estimates for the temperatures T_{1}, \ldots, T_{4}.

Page 32

In Exercises 9 and 10, write a vector equation that is equivalent to the given system of equations.
9. $x_{2}+5 x_{3}=0$
$4 x_{1}+6 x_{2}-x_{3}=0$
$-x_{1}+3 x_{2}-8 x_{3}=0$
$\mathrm{X} 1\left[\begin{array}{c}0 \\ 4 \\ -1\end{array}\right]+\mathrm{X} 2\left[\begin{array}{l}1 \\ 6 \\ 3\end{array}\right]+\mathrm{X} 3=\left[\begin{array}{c}5 \\ -1 \\ -8\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

