Linear Algebra Sections 1594

Pg. 32

1) Compute $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{2 v}$.

$$
\mathrm{u}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right], \mathrm{v}=\left[\begin{array}{l}
-3 \\
-1
\end{array}\right]
$$

$\left[\begin{array}{r}-1 \\ 2\end{array}\right]+\left[\begin{array}{c}-3 \\ -1\end{array}\right]=\left[\begin{array}{c}-4 \\ 1\end{array}\right] \quad\left[\begin{array}{r}-1 \\ 2\end{array}\right]-2\left[\begin{array}{c}-3 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right]-\left[\begin{array}{c}-6 \\ -2\end{array}\right]=\left[\begin{array}{l}5 \\ 4\end{array}\right]$

Pg. 100
11) Compute $A D$ and $D A$. Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a 3×3 matrix B, not the identity matrix or the zero matrix, such that $A B=B A$.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right] \text { and } D=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
\mathbf{1} & \mathbf{2} & \mathbf{3} \\
\mathbf{2} & \mathbf{4} & \mathbf{5} \\
\mathbf{3} & \mathbf{5} & \mathbf{6}
\end{array}\right] \times\left[\begin{array}{lll}
\mathbf{5} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{3} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{2}
\end{array}\right]=\left[\begin{array}{lll}
1 \times 5+2 \times 0+3 x 0 & 1 \times 0+2 \times 3+3 \times 0 & 1 \times 0+2 \times 0+3 \times 2 \\
2 \times 5+4 \times 0+5 \times 0 & 2 \times 0+4 \times 3+5 \times 0 & 2 \times 0+4 \times 0+5 \times 2 \\
3 x 5+5 \times 0+6 x 0 & 3 \times 0+5 x 3+6 x 0 & 3 \times 0+5 \times 0+6 \times 2
\end{array}\right]
$$

A
D
AD

$$
=\left[\begin{array}{ccc}
5 & 6 & 6 \\
10 & 12 & 10 \\
15 & 15 & 12
\end{array}\right]
$$

AD

$$
\left[\begin{array}{lll}
\mathbf{5} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{3} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{2}
\end{array}\right] \times\left[\begin{array}{lll}
\mathbf{1} & \mathbf{2} & \mathbf{3} \\
\mathbf{2} & \mathbf{4} & \mathbf{5} \\
\mathbf{3} & \mathbf{5} & \mathbf{6}
\end{array}\right]=\left[\begin{array}{lll}
5 \times 1+0 \times 2+0 \times 3 & 5 \times 2+0 \times 4+0 \times 5 & 5 \times 3+0 \times 5+0 \times 6 \\
0 \times 1+3 \times 2+0 \times 3 & 0 \times 2+3 \times 4+0 \times 5 & 0 \times 3+3 \times 5+0 \times 6 \\
0 \times 1+0 \times 2+2 \times 3 & 0 \times 2+0 \times 4+2 \times 5 & 0 \times 3+0 \times 5+2 \times 6
\end{array}\right]
$$

D
A

$$
=\left[\begin{array}{lll}
5 & 10 & 15 \\
6 & 12 & 15 \\
6 & 10 & 12
\end{array}\right]
$$

When A is multiplied by D we are multiplying the rows of A times the columns of D, and when D is multiplied by A we are multiplying the rows of D times the columns of A.

DA

$$
\left[\begin{array}{lll}
\mathbf{1} & \mathbf{2} & \mathbf{3} \\
\mathbf{2} & \mathbf{4} & \mathbf{5} \\
\mathbf{3} & \mathbf{5} & \mathbf{6}
\end{array}\right] \times\left[\begin{array}{lll}
\mathbf{5} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{5} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{5}
\end{array}\right]=\left[\begin{array}{lll}
1 x 5+2 x 0+3 x 0 & 1 x 0+2 x 5+3 x 0 & 1 \times 0+2 x 0+3 \times 5 \\
2 x 5+4 x 0+5 x 0 & 2 x 0+4 x 5+5 x 0 & 2 x 0+4 x 0+5 \times 5 \\
3 x 5+5 x 0+6 x 0 & 3 x 0+5 x 5+6 x 0 & 3 x 0+5 x 0+6 x 5
\end{array}\right]
$$

A
B
AB

$$
=\left[\begin{array}{ccc}
5 & 10 & 15 \\
10 & 20 & 25 \\
15 & 25 & 30
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
\mathbf{5} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{5} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{5}
\end{array}\right] \times\left[\begin{array}{lll}
\mathbf{1} & \mathbf{2} & \mathbf{3} \\
\mathbf{2} & \mathbf{4} & \mathbf{5} \\
\mathbf{3} & \mathbf{5} & \mathbf{6}
\end{array}\right]=\left[\begin{array}{lll}
5 x 1+0 \times 2+0 \times 3 & 5 \times 2+0 \times 4+0 \times 5 & 5 \times 3+0 \times 5+0 \times 6 \\
0 \times 1+5 \times 2+0 \times 3 & 0 \times 2+5 \times 4+0 \times 5 & 0 \times 3+5 \times 5+0 \times 6 \\
0 x 1+0 x 2+5 \times 3 & 0 \times 2+0 \times 4+5 \times 5 & 0 \times 3+0 \times 5+5 \times 6
\end{array}\right]
$$

B

A

BA

$$
=\left[\begin{array}{ccc}
5 & 10 & 15 \\
10 & 20 & 25 \\
15 & 25 & 30
\end{array}\right]
$$

$\left[\begin{array}{ccc}5 & 10 & 15 \\ 10 & 20 & 25 \\ 15 & 25 & 30\end{array}\right]$	$=\left[\begin{array}{ccc}5 & 10 & 15 \\ 10 & 20 & 25 \\ 15 & 25 & 30\end{array}\right]$
$A B$	$=B A$

