Linear Algebra - 1594

Alfaz Ally

09/06/2012

Homework \#1 page 100 \# 1\&3

Referring to the matrices of exercises 1 and 2 please also compute $B^{\mathrm{r}}, \mathrm{D}^{\mathrm{r}}, \mathrm{D}^{\mathrm{r}}+\mathrm{C}, \mathrm{AB}^{\mathrm{r}}, \mathrm{B}^{\mathrm{r}} \mathrm{A}$, and Er^{r}. For these computations explain any undefined expression

$$
\begin{aligned}
& \mathrm{A}=\left(\begin{array}{ccc}
2 & 0 & -1 \\
4 & -5 & 2
\end{array}\right) \quad \mathrm{B}=\left(\begin{array}{ccc}
7 & -5 & 1 \\
1 & -4 & -3
\end{array}\right) \quad \mathrm{C}=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right) \quad \mathrm{D}=\left(\begin{array}{cc}
3 & 5 \\
-1 & 4
\end{array}\right) \\
& \mathrm{E}=\binom{-5}{3}
\end{aligned}
$$

1. $-2 \mathrm{~A}, \mathrm{~B}-2 \mathrm{~A}, \mathrm{AC}, \mathrm{CD}$

$$
\left(\begin{array}{ccc}
\text { A. }-2 \mathrm{~A} & & \\
2(-2) & 0(-2) & 1(-1) \\
4(-2) & -5(-2) & 2(-2)
\end{array}\right)=\left(\begin{array}{ccc}
-4 & 0 & 2 \\
-8 & 10 & -4
\end{array}\right)
$$

B. $\mathrm{B}-2 \mathrm{~A}=\mathrm{B}+(-2 \mathrm{~A})$
$\left(\begin{array}{ccc}7 & -5 & 1 \\ 1 & -4 & -3\end{array}\right)+\left(\begin{array}{ccc}-4 & 0 & 2 \\ -8 & 10 & -4\end{array}\right)=\left[\begin{array}{ccc}(-4)+7 & (-5)+0 & 1+2 \\ (-8)+1 & (-4)+10 & (-3)+(-7)\end{array}\right)$

$$
=\left(\begin{array}{ccc}
3 & -5 & 3 \\
-7 & 6 & -7
\end{array}\right)
$$

C. AC

$$
\begin{gathered}
\left(\begin{array}{ccc}
2 & 0 & -1 \\
4 & -5 & 2
\end{array}\right] *\left(\begin{array}{cc}
1 & 2 \\
-2 & 1 \\
2 \mathrm{X} 3
\end{array}\right) \\
2 \mathrm{X} 2
\end{gathered}
$$

In order to multiply matrices the two numbers indicate by the lines have to be the same size so in this case we cannot multiply so it is undefined.
D. $C D$

$$
\begin{aligned}
{\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right] *\left[\begin{array}{cc}
3 & 5 \\
-1 & 4
\end{array}\right] } & =\left[\begin{array}{cc}
1 * 3+2 *(-1) & 1 * 5+4 * 2 \\
(-2) * 3+1 *(-1) & 5 *(-2)+1 * 4
\end{array}\right] \\
& =\left(\begin{array}{cc}
1 & 13 \\
-7 & -6
\end{array}\right]
\end{aligned}
$$

3.

Let $\mathrm{A}=\left[\begin{array}{ll}2 & -5 \\ 3 & -2\end{array}\right] \quad$ Compute $3 \mathrm{I}_{2}$ - A and $\left(3 \mathrm{I}_{2}\right) \mathrm{A}$
$\mathrm{I}_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$3 \mathrm{I}_{2}-\mathrm{A}=\left(\begin{array}{ll}1 * 3 & 0 * 3 \\ 0 * 3 & 1 * 3\end{array}\right) \quad-\left(\begin{array}{cc}2 & -5 \\ 3 & -2\end{array}\right)=\left(\begin{array}{cc}1 & 5 \\ -3 & 5\end{array}\right)$
$\left(3 \mathrm{I}_{2}\right) \mathrm{A}=\left(\begin{array}{ll}2 * 3 & (-5) * 3 \\ 3 * 3 & (-2) * 3\end{array}\right)=\left(\begin{array}{cc}6 & -15 \\ 9 & -6\end{array}\right)$
B^{T}
$\mathrm{B}=\left(\begin{array}{ccc}7 & -5 & 1 \\ 1 & -4 & -3\end{array}\right) \quad \mathrm{B}$ transpose $=\left(\begin{array}{cc}7 & 1 \\ -5 & -4 \\ 1 & -3\end{array}\right)$
$\mathrm{D}^{\text {t }}$

$$
\begin{array}{ll}
\mathrm{D}=\left(\begin{array}{cc}
3 & 5 \\
-1 & 4
\end{array}\right) & \mathrm{D} \text { transpose }=\left(\begin{array}{cc}
3 & -1 \\
5 & 4
\end{array}\right) \\
\mathrm{D}^{\mathrm{T}+\mathrm{C}} \\
\mathrm{D}=\left(\begin{array}{cc}
3 & 5 \\
-1 & 4
\end{array}\right) & \mathrm{C}=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)
\end{array}
$$

D transpose $=\left(\begin{array}{cc}3 & -1 \\ 5 & 4\end{array}\right)$
$\mathrm{D}^{\mathrm{T}}+\mathrm{C}=\left(\begin{array}{cc}3 & -1 \\ 5 & 4\end{array}\right) \quad+\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right) \quad=\left(\begin{array}{ll}4 & 1 \\ 3 & 5\end{array}\right)$

$$
\begin{aligned}
& A A^{\mathrm{T}} \\
& \mathrm{~A}=\left(\begin{array}{ccc}
2 & 0 & -1 \\
4 & -5 & 2
\end{array}\right) \quad \mathrm{B}=\left(\begin{array}{ccc}
7 & -5 & 1 \\
1 & -4 & -3
\end{array}\right) \quad \mathrm{B} \text { transpose }=\left(\begin{array}{cc}
7 & 1 \\
-5 & -4 \\
1 & -3
\end{array}\right) \\
& \mathrm{AB}^{\mathrm{T}}=\left(\begin{array}{ccc}
2 & 0 & 1 \\
-4 & -5 & 2
\end{array}\right) *\left(\begin{array}{cc}
7 & 1 \\
-5 & -4 \\
1 & -3
\end{array}\right)= \\
& \left(\begin{array}{c}
(2 *-7)+(0 *-5)+(-1 *-1) \\
(-4 *-7)+(-5 *-5)+(2 *-1) \\
(2 * 1)+(0 *-4)+(-5 *-4)+(2 *-3
\end{array}\right) \\
& \left(\begin{array}{cc}
-13 & 5 \\
-5 & 18
\end{array}\right)=\mathrm{AB}^{\mathrm{T}}
\end{aligned}
$$

$\mathrm{B}^{\mathrm{T}} \mathrm{A}$

$$
\mathrm{B}=\left(\begin{array}{ccc}
7 & -5 & 1 \\
1 & -4 & -3
\end{array}\right) \quad \mathrm{A}=\left(\begin{array}{ccc}
2 & 0 & -1 \\
4 & -5 & 2
\end{array}\right) \quad \mathrm{B} \text { transpose }=\left(\begin{array}{cc}
7 & 1 \\
-5 & -4 \\
1 & -3
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
7 & 1 \\
-5 & -4 \\
1 & -3
\end{array}\right) \quad *\left(\begin{array}{ccc}
2 & 0 & -1 \\
4 & -5 & 2
\end{array}\right)
$$

$$
\begin{aligned}
& \overline{\bar{z}}\left(\begin{array}{ccc}
(7 * 2)+(1 * 4)+(0 * 0) & (7 * 0)+(1 *-5)+(0 * 0) & (7 *-1)+(1 * 2)+(0 * 0) \\
(-5 * 2)+(-4 *-4)+(0 * 0) & (-5 * 0)+(-4 *-5)+(0 * 0) & (-5 *-1)+(-4 * 2)+(0 * 0) \\
(1 * 2)+(-3 * 4)+(0 * 0) & (1 * 0)+(-3 *-5)+(0 * 0) & (1 *-1)+(-3 * 2)+(0 * 0)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
18 & -5 & -5 \\
-26 & 20 & -3 \\
-10 & 15 & -7
\end{array}\right)
\end{aligned}
$$

