Homework: Chapter 2.1

Kaleel Bethel

September 6, 2012
5) Let $\mathbf{A}=\left[\begin{array}{cc}-1 & 3 \\ 2 & 4 \\ 5 & -3\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{cc}4 & -2 \\ -2 & 3\end{array}\right] \quad \mathbf{b} 1=\left[\begin{array}{c}4 \\ -2\end{array}\right] \quad \mathbf{b} \mathbf{2}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$

Compute the product of $A B$ in two ways: (a) by the definition, where $A b 1$ and $A b 2$ are computed separately, and (b) by the row-column rule for computing AB.

Solutions.
a) $\mathbf{A b} \mathbf{1}=\left[\begin{array}{cc}-1 & 3 \\ 2 & 4 \\ 5 & -3\end{array}\right]\left[\begin{array}{c}4 \\ -2\end{array}\right]=\left[\begin{array}{c}-1(4)+3(-2) \\ 2(4)+4(-2) \\ 5(4)+-3(-2)\end{array}\right]=\left[\begin{array}{c}-10 \\ 0 \\ 26\end{array}\right]$
$\mathbf{A b 2}=\left[\begin{array}{cc}-1 & 3 \\ 2 & 4 \\ 5 & -3\end{array}\right]\left[\begin{array}{c}-2 \\ 3\end{array}\right]=\left[\begin{array}{c}-1(-2)+3(3) \\ 2(-2)+4(3) \\ 5(-2)+-3(3)\end{array}\right]=\left[\begin{array}{c}11 \\ 8 \\ -19\end{array}\right]$
$\mathbf{A B}=\mathbf{A}\left[\begin{array}{ll}\mathbf{b} 1 & \mathbf{b} 2\end{array}\right]=\left[\begin{array}{cc}-10 & 11 \\ 0 & 8 \\ 26 & -19\end{array}\right]$
b) $\mathbf{A B}=\left[\begin{array}{cc}-1 & 3 \\ 2 & 4 \\ 5 & -3\end{array}\right]\left[\begin{array}{cc}4 & -2 \\ -2 & 3\end{array}\right]=\left[\begin{array}{cc}-1(4)+3(-2) & -1(-2)+3(3) \\ 2(4)+4(-2) & 2(-2)+4(3) \\ 5(4)+-3(-2) & 5(-2)+-3(3)\end{array}\right]=\left[\begin{array}{cc}-10 & 11 \\ 0 & 8 \\ 26 & -19\end{array}\right]$
7) If matrix A is 5×3 and the product of $A B$ is 5×7, what is the size of B ?

Solution.

The size of B is 3×7 because:
a) In order for the product of two matrices to exist (not being undefined) the number of columns in A must be equal to the number of rows in B. Meaning, since A has 3 columns, B has 3 rows.
b) The size of the product, AB , is equal to the number of rows in A by the number of columns in B. Therefore, because $A B$ has 7 columns, B has 7 columns.
9) Let $\mathbf{A}=\left[\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{cc}1 & 9 \\ -3 & k\end{array}\right]$

What value(s) of k, if any, will make $A B=B A$?

Solution.

$\mathbf{A B}=\left[\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 9 \\ -3 & k\end{array}\right]=\left[\begin{array}{cc}2(1)+3(-3) & 2(9)+3(k) \\ -1(1)+1(-3) & -1(9)+1(k)\end{array}\right]=\left[\begin{array}{cc}-7 & 18+3 k \\ -4 & -9+k\end{array}\right]$
$\mathbf{B A}=\left[\begin{array}{cc}1 & 9 \\ -3 & k\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}-1(4)+3(-2) & -1(-2)+3(3) \\ 2(4)+4(-2) & 2(-2)+4(3) \\ 5(4)+-3(-2) & 5(-2)+-3(3)\end{array}\right]=\left[\begin{array}{cc}-7 & 12 \\ -6-k & -9+k\end{array}\right]$

In order to find the proper value of k, if it exists, one must compare each entry of $A B$ to the corresponding entry of BA(i.e. the entries with the same (i,j) values). Only values of k consistent between all entries will make $A B$ equal to $B A$. If there are no consistent values for k in all entries, then there is no value of k which would make $A B$ equal to $B A$.
$(1,1):-7=-7$ Any value of k will make $A B$ at $(1,1)$ equal $B A$ at $(1,1)$.
$(1,2): 18+3 k=12 \rightarrow 3 k=-6 \rightarrow k=-2 \quad A B$ at $(1,2)$ will equal $B A$ at $(1,2)$ when k is -2.
$(2,1):-4=-6-k \rightarrow 2=-k \rightarrow k=-2 \quad A B$ at $(2,1)$ will equal $B A$ at $(2,1)$ when k is -2.
$(2,2):-9+k=-9+k \rightarrow k=k \quad$ Any value of k will make $A B$ at $(2,2)$ equal $B A$ at $(2,2)$.

The only value all 4 entries share in common is -2 , therefore $A B$ is equal to $B A$ when $k=-2$.

