Example Homework for Linear Algebra

Terence Kıvran-Swaine

August 26, 2012

Instructions: Let

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
-3 & 0 & 1 \\
2 & 5 & -4
\end{array}\right] \quad B=\left[\begin{array}{ccc}
6 & -7 & 1 \\
-1 & 5 & 2
\end{array}\right] \\
C=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \quad D=\left[\begin{array}{cc}
1 & -3 \\
0 & 1
\end{array}\right] \quad E=\left[\begin{array}{c}
4 \\
-5
\end{array}\right] .
\end{gathered}
$$

Compute the following expressions. If an expression is undefined, explain why.

Solutions

1.

$$
\begin{aligned}
-3 A & =-3\left[\begin{array}{ccc}
-3 & 0 & 1 \\
2 & 5 & -4
\end{array}\right] \\
& =-3\left[\begin{array}{ccc}
(-3) \cdot(-3) & (-3) \cdot 0 & (-3) \cdot 1 \\
(-3) \cdot 2 & (-3) \cdot 5 & (-3) \cdot(-4)
\end{array}\right] \\
& =-3\left[\begin{array}{ccc}
9 & 0 & -3 \\
-6 & -15 & 12
\end{array}\right]
\end{aligned}
$$

2.

$$
\begin{aligned}
B-3 A & =B+(-3) A \\
& =\left[\begin{array}{ccc}
6 & -7 & 1 \\
-1 & 5 & 2
\end{array}\right]+\left[\begin{array}{ccc}
9 & 0 & -3 \\
-6 & -15 & 12
\end{array}\right] \\
& =\left[\begin{array}{ccc}
(6+9) & (-7+0) & (1-3) \\
(-1-6) & (5-15) & (2+14)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
15 & -7 & -2 \\
-7 & -10 & 16
\end{array}\right]
\end{aligned}
$$

3. $A+C$ is undefined because A has more columns than C.
4. $A D$ is undefined because A has more columns than D has rows.
5.

$$
\begin{aligned}
C D & =\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -3 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 \cdot 1+2 \cdot 0 & 1 \cdot(-3)+2 \cdot 1 \\
0 \cdot 1+1 \cdot 0 & 0 \cdot(-3)+1 \cdot 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1+0 & (-3)+2 \\
0+0 & 0+1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

6.

$$
\begin{aligned}
C E & =\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
-5
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \cdot 4+2 \cdot(-5) \\
0 \cdot 4+1 \cdot(-5)
\end{array}\right] \\
& =\left[\begin{array}{l}
-6 \\
-5
\end{array}\right]
\end{aligned}
$$

