HomeWork #4

Submitted by: Zeeshan Ahmad

Submitted To: Prof. Viviana Vladutescu

EET-3132 Remote Sensing

Chapter #4

Q1: - Calculate the angular velocity with respect to the center of the Earth for a Geosynchronous orbit in rad/s?

ANS: -
$$\omega$$
=V/R, Also $\omega = \frac{2\pi}{\tau} = \frac{2\pi}{86.400s} = 7.27 * 10^{-5} \text{rad/sec}$ or 85urad/sec

Q2: - Calculate the period for a circular orbit at an altitude of one Earth radius.

ANS: - $R_{Earth} = 6380 \text{km}$

$$\tau = \frac{2\pi}{R_{Earth}} \sqrt{\frac{r^3}{go}} = \frac{2\pi}{6380km} * \sqrt{\frac{(2*6380km)^3}{9.8m/s^2}} = 14339 \sec or \ about \ 4 \ hours$$

Q3: - Calculate the period for a circular orbit at the surface of the Earth. What is the velocity? This is a "Herget" orbit, and is considered undesirable for a satellite.

ANS: - $R_{Earth} = 6380 km$

Period = τ

$$\tau = \frac{2\pi}{R_{Earth}} \sqrt{\frac{r^3}{go}} = \frac{2\pi}{6380km} * \sqrt{\frac{(6380km)^3}{9.8m/s^2}} = 5076sec$$

Velocity = v

$$v = \sqrt{g_{\frac{o}{r}}} R_{Earth} = \sqrt{\frac{9.8m/s^2}{6380km}} * 6380km = 7907m/s$$

Q5: - Derive the radius of the orbit for a geosynchronous orbit.

ANS: - We know that

$$\tau = \frac{2\pi}{R_{Earth}} \sqrt{\frac{r^3}{go}} \quad \text{Implies that } r^3 = \left(\frac{R_{Earth} * \tau}{2\pi}\right)^2 * go$$

$$r = \sqrt[3]{\left(\frac{R_{Earth} * \tau}{2\pi}\right)^2 * go} = \sqrt[3]{\left(\frac{6380000 * 86400}{2\pi}\right)^2 * 9.8} = 41883.685 \text{km}$$

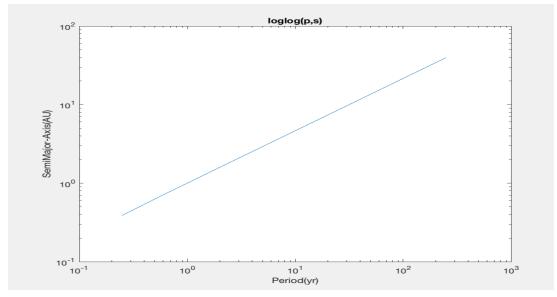
Q6: - Can you see Antarctica from geosynchronous orbit?

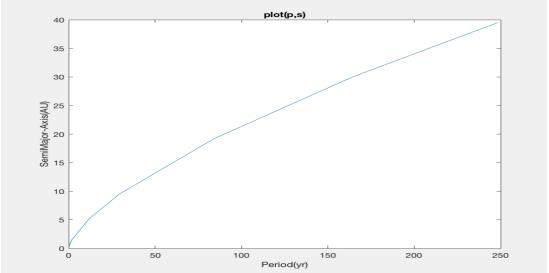
ANS: - No, Antarctica cannot be seen from geosynchronous orbit because geostationary satellites does not cover that region.

Q7: - A satellite is in an elliptical orbit, with perigee of 1.5 Earth radii (geocentric), and apogee of three Earth radii (geocentric). If the velocity is 3.73 km/s at apogee, what is the velocity at perigee (what is the semi-major axis)? Hint: Use conservation of angular momentum: $\mathbf{L} = m\mathbf{v} \times \mathbf{r} = \text{constant}$.

ANS:-
$$L_A$$
 = mVa X Ra and Lp = mVa X Ra mVa X Ra mVa X Ra = mVa X Ra $V_{\rm perigee}R_{\rm perigee}=V_{\rm apogee}R_{apogee}$ $V_{\rm perigee}=\frac{V_{apogee}R_{apogee}}{R_{perigee}}/R_{perigee}$ $V_{\rm perigee}=\frac{\left(3.73\frac{km}{s}\right)*19.14X10^6\ m}{9.57X10^6\ m}$ $V_{\rm perigee}=7.46{\rm km/s}$

Q4: - Look up the orbits for the nine planets and plot the period vs. the semi-major axis. Do they obey Kepler's third law? This is best done by using a log-log plot. Even better, plot the two-thirds root of the period vs. the semi-major axis (or mean radius).


Orbital Data for the Planets & Dwarf Planets


Planet	Semimajor Axis (<u>AU</u>)	Orbital Period (yr)	Orbital Speed (km/s)	Orbital <u>Eccentricity</u> (e)	Inclination of Orbit to Ecliptic (°)	Rotation Period (days)	Inclination of Equator to Orbit (°)
Mercury	0.3871	0.2408	47.9	0.206	7.00	58.65	0
<u>Venus</u>	0.7233	0.6152	35.0	0.007	3.39	-243.01 [*]	177.3
<u>Earth</u>	1.000	1	29.8	0.017	0.00	0.997	23.4
Mars	1.5273	1.8809	24.1	0.093	1.85	1.026	25.2
<u>Jupiter</u>	5.2028	11.862	13.1	0.048	1.31	0.410	3.1
Saturn	9.5388	29.458	9.6	0.056	2.49	0.426	26.7
<u>Uranus</u>	19.1914	84.01	6.8	0.046	0.77	-0.746 [*]	97.9
Neptune	30.0611	164.79	5.4	0.010	1.77	0.718	29.6
Dwarf Planets							
Ceres	2.76596	4.599	17.882	0.07976	10.587	0.378	~3
<u>Pluto</u>	39.5294	248.54	4.7	0.248	17.15	-6.4 [*]	122.5
<u>Haumea</u>	43.335	285.4	4.484	0.18874	28.19	0.163	?
<u>Makemake</u>	45.791	309.88	4.419	0.159	28.96	?	?
<u>Eris</u>	67.6681	557	3.436	0.44177	44.187	> 8 hrs ?	?

ANS: -

```
Chap_4_Prob_4.m × +
1
       % Zeeshan Ahmad
       % Submitted To: Prof. Viviana Vladutescu
2
       % EET-3132 Remote Sensing, Spring 2016
3
4
       % Problem 4, Chapter 4, RS from Air and Space
5
6 -
       p = [0.248, 0.6152, 1, 1.8809, 11.862, 29.458, 84.01, 164.79, 248.54];
7
                         % Orbital Period (Year)
8 -
       s = [0.3871, 0.7233, 1, 1.5273, 5.2028, 9.5388, 19.1914, 30.0611, 39.5294];
                         % Semimajor Axis (Astronimical Unit, 1 AU=149,597,871 km)
9
10 -
       loglog(p,s);
11 -
       title('loglog(p,s)')
       xlabel('Period(yr)')
12 -
13 -
       ylabel('SemiMajor-Axis(AU)')
14
       %%
15 -
       p = [0.248, 0.6152, 1, 1.8809, 11.862, 29.458, 84.01, 164.79, 248.54];
16
                         % Orbital Period (Year)
       s = [0.3871, 0.7233, 1, 1.5273, 5.2028, 9.5388, 19.1914, 30.0611, 39.5294];
17 -
                         % Semimajor Axis (Astronimical Unit, 1 AU=149,597,871 km)
18
19 -
       plot(p,s);
20 -
       title('plot(p,s)')
21 -
       xlabel('Period(yr)')
22 -
       ylabel('SemiMajor-Axis(AU)')
```

Results

