

The Smart
Express Bus
By Yeraldin Estrella, and Lulcasz Golbiewsk.

12/23/2013

New York City College of Technology

Dept. of Computer Engineering Technology

Class: EMT 2461 EM. Sys: Software Interface

 Section: E356/Fall 2013

Instructor. Dr. Li

Table of Contents

Project Description .. 3

System Design ... 5

Circuit Schematics ... 9

Arduino Sketch .. 15

Reference ... 18

Acknowledgement……………………………………………………………………………….19

Project Description

 Our project is a preliminary design for an automated bus. What that means is the bus

supposed to detect different trigger points and perform different tasks, depending on the point

detected.

 For the project we have utilized two different colors of tape, yellow and black. Both tapes

were 2 inches wide to make sure the robot has no problems with detection. The black tape has

been used for the main track which the robot follows and as the initial trigger after Bluetooth

initialization. The black tape was laid out for the maximum length of 5ft and 6 inches in a

straight line. Within the maximum length of black tape we have set up two trigger points

identified by yellow tape, which were 2 inches by 2 inches. The trigger points were spaced 16

inches apart from each other on the track. The first trigger point was set 30 inches from the

beginning of the track.

 We also utilized Infra-red sensors (IR Sensor) in our project. Front mounted IR sensor

was used to detect an obstacle in the road and stop the robot until the obstacle was gone. The

distance for the sensor was set to 440mm. if an object was pinged and returned the value of

440mm or less the robot stopped and held its position.

 The side mounted IR was utilized for passenger detection. When the bus stop was trigged

by yellow tape, the robot would ping the side and see if anybody was waiting at the bus stop. We

used a block of wood to emulate people on the bus stop for the project.

 If the condition came back negative for passengers, then we had the robot stop at the bus

stop only for 1 second, but if there were passengers present then the time interval was 4 seconds

before moving forward.

TRACK SET UP:

 For the purposes of our project we have decided to have a track made up of two colors of

2 inch wide tape. The main color is black tape which represents main Street. The tape was put

down on the floor, at the maximum length of 5ft and 6 inches, which is 66 inches. The yellow

tape was placed 30 inches and 46 inches from the start location (16 inches apart).

 The initial position was represented by black tape, and for the robot to initialize we

needed to the black tape detection as well as Bluetooth initialization via remote trigger. The

necessary conditions under which the robot performs are:

 Color detection within acceptable range. (Range limit found using sensor calibration Black-

between 200 and 400, Yellow-900 and 20000 [high variable fluctuation due to floor

irregularity]).

 Movable obstacle.

TRACK SKETCH:

SECOND BUS STOP FIRST BUS STOP TRIGGER INITIAL

CYLINDER REPRESENTING

PEOPLE WAITING FOR THE

System Design

 Bluetooth is connectivity is established.

Find the Front Sensor

Value.

Value < 440?

Find the color of the tape

Black or Yellow?

Move forward

Find the Left Sensor

Value.

Value < 440?

Brake for 5 seconds then

move forward

Brake for 1 second then

move forward

This is the beginning of the

loop. The Bluetooth must

be connected to start.

Go back to step one

Black

Yellow

Yes

Brake until Front Sensor

Value <440

No

Yes No

If there is something in

front of the front sensor

value the car must stop.

This simulates traffic.

Black tape is the road

while the yellow tapes are

the bus stops.

If the left sensor value is

high it stops for much

longer than if it was low.

The left sensor simulates a

sensor finding people waiting

at the bus stop.

Component Design

Robot Layout

The following Drawings represent the Smart Express Bus layout and its mechanical and electrical

Components.

Top and Bottom Views

Drawn by: Yeraldina Estrella

The Smart Express Bus was constructed using a chassis which is made of plastic and has four

wheels. We mounted Arduino UNO R3 on the top as well as AA batteries to power Arduino and

a breadboard for electrical components wiring and Bluetooth. The Bluetooth was used to allow

communication from the smart express Bus and a smartphone.

For the purpose of this project, we use two DC brushed motors to drive the rear wheels (left and

right) and the front wheels where utilized as freewheels meaning that we did not use motors to

drive the front wheels.

We utilized an H-Bridge IC (SN754410) to drive the Rear Motors. The H-Bridge was mounted

and wired using the breadboard on top of the chassis as shown in the Top View drawing. An RBG

Color Sensor (TCS 34725) was mounted on the bottom of the chassis and was used to detect the

line color in which the Smart Express Bus runs in this case black, as well as to detect the Bus stops

which was represented by a different color(yellow).

We also utilized three Infrared Sensors (IR Sensors). One IR sensor was mounted on the front

and the other two IR sensors were mounted on the right and left side as shown in the 3D drawing.

The front IR sensor was utilized to detect traffic and avoid crashing with other objects ahead. The

IR sensors on the sides were utilized to detect if passengers were waiting on the bus stop.

Robot 3D Drawing

Drawn by: Yeraldina Estrella

Wiring & Circuitry Schematics

H-Bridge IC SN754410 Wiring Diagram

Drawn by: Yeraldina Estrella

H-Bridge ICs allows controlling motors speed and direction. In order to control motor speed, the

enable pin must be connected to a PWM Port in Arduino. PWM ports allow changing duty cycle

and thus speed can be controlled. The motors need to connect to the output pins in each channel.

The inputs pins needs to be connected to a port in Arduino. Pin 8 is the supply voltage for the

motors and pin 16 is the supply voltage for the H-bridge usually connected to 5V from Arduino.

Pins 4, 5, 12, and 13 are ground pins and must be connected to ground. The Arduino ports

connected to the input pins enable 1 and enable 2 on the H-bridge must set as output.

For example:

int Enable1=5; //Enable1 connected to PWM port 5 on arduino

int Enable2=6;
pinMode(Enable1, OUTPUT);

pinMode(Enable2, OUTPUT);

pinMode(2, OUTPUT); //set arduino port 2 as output. Port 2 is connected to input 1 on H bridge
pinMode(4, OUTPUT); //set arduino port 4 as output. Port 7 is connceted to input 2

pinMode(7, OUTPUT);
pinMode(8, OUTPUT);

The motors speed can be controlled by changing the duty cycle. The direction in which the motors

run can be control by changing the state of the pin that the motors are connected such as HIGH or

LOW. The following code shows 100% duty cycle and the motors run forward:

 digitalWrite(2, LOW); // motors turn in FORWARD direction

 digitalWrite(4, HIGH);

 analogWrite(Enable1, 200); // full speed

 digitalWrite(7, LOW); // motors turn in FORWARD direction

 digitalWrite(8, HIGH);

 analogWrite(Enable2, 200); // full speed

 delay(2000);

The following table shows how the motor direction can be control.

Enable Input 1 Input 2 Result

HIGH HIGH LOW Motors turn Reverse

HIGH HIGH HIGH Motors break

HIGH LOW HIGH Motors Turn Forward

HIGH LOW LOW Motors Break

LOW X X Motors Break

Arduino UNO R3 & RBG Color Sensor Wiring Diagram

Arduino Uno R3 Diagram Source: http://www.umsats.ca/wp-

content/uploads/2013/02/Arduino_uno_Pinout.pdf

Drawn by: Yeraldina Estrella

Arduino UNO R3 & RBG Color Sensor (TCS 34725) Wiring Table

RBG Color Sensor Arduino

Vin 5V

Ground Ground

SDL (Serial Data Line) SDL (Serial Data Line)

SCL (Serial Clock Line) SCL (Serial Clock Line)

For coding the RBG Color Sensor, the RBG Color Sensor library provided by Adafruit was used

as follow in the sckecth:

#include <Wire.h>
#include "Adafruit_TCS34725.h"

// our RGB -> eye-recognized gamma color
byte gammatable[256];

http://www.umsats.ca/wp-content/uploads/2013/02/Arduino_uno_Pinout.pdf
http://www.umsats.ca/wp-content/uploads/2013/02/Arduino_uno_Pinout.pdf

Adafruit_TCS34725 tcs = Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_50MS, TCS34725_GAIN_4X);

The following code was used to obtain color reading from the RBG color sensor:

1. if (tcs.begin()) {

2. Serial.println("Found sensor");

3. } else {

4. Serial.println("No TCS34725 found ... check your connections");

5. while (1); // halt!

6. }

7. // it helps convert RGB colors to what humans see

8. for (int i=0; i<256; i++) {

9. float x = i;

10. x /= 255;

11. x = pow(x, 2.5);

12. x *= 255;

13. }

14. }

15. void loop() {

16. uint16_t clear, red, green, blue;

17. tcs.setInterrupt(false); // turn on LED

18. delay(100); // takes 50ms to read

19. tcs.getRawData(&red, &green, &blue, &clear);

20. tcs.setInterrupt(true); // turn off LED

21. Serial.print("C:\t"); Serial.print(clear);

22. Serial.print("\tR:\t"); Serial.print(red);

23. Serial.print("\tG:\t"); Serial.print(green);

24. Serial.print("\tB:\t"); Serial.print(blue);

25. if ((clear >=200 && clear <= 400)) //&& (red >=110 && red <= 160)&& (green >=50 && green <= 110) && (blue >=30 &&

blue <= 90))

26. {

27. Serial.println("black \n");

28. }

29. else if ((clear >=1000 && clear <= 1500))// && (red >=100 && red <= 400)&& (green >=100 && green <= 400) && (blue

>=100 && blue <= 400))

30. {

31. Serial.println("yellow \n");

32. }

33. else if ((clear>=401 && clear<=600))

34. {

IR Sensor and Arduino Wiring

Drawn by: Yeraldina Estrella

The IR sensors are connected to ground and 5V and the data line is connected to an analog port

in Arduino. The IR sensors works by transmitting light and receiving the light which is read as

voltage depending on the wavelength of the light received. The IR sensor reading can be obtained

by the following code:

1. int LeftSensorValue;

2. int RightSensorValue;

3. int FrontSensorValue;

4. void loop() {

5. // put your main code here, to run repeatedly:

6. LeftSensorValue=analogRead(0);

7. RightSensorValue=analogRead(2);

8. FrontSensorValue=analogRead(1);

Bluetooth Diagram

Drawn by: Yeraldina Estrella

Arduino UNO R3 & Bluetooth Wiring Table

Bluetooth Arduino

5V 5V

Ground Ground

TXD RXD (Digital pin 0)

RXD TXD (Digital pin 1)

Bluetooth can be used to communicate with Arduino. Android Smartphones allows

communicating with a Bluetooth connected to Arduino by using an application such as

Connection Terminal. Communication between Android phones and Arduino via a Bluetooth

allows adding control to our smart express bus.

Arduino Sketch

#include <Wire.h>
#include "Adafruit_TCS34725.h"
#include <SoftwareSerial.h>
SoftwareSerial myBluetooth(0,1);
int Enable1=5; //Enable1 connected to PWM port 5 on arduino
int Enable2=6;
void moveforward ();
void turnleft ();
void turnright();
void brake ();
// our RGB -> eye-recognized gamma color
byte gammatable[256];

Adafruit_TCS34725 tcs = Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_50MS, TCS34725_GAIN_4X);

void setup() {
Serial.begin(9600);
pinMode(Enable1, OUTPUT);
pinMode(Enable2, OUTPUT);
pinMode(2, OUTPUT); //set arduino port 2 as output. Port 2 is connected to input 1 on H bridge
pinMode(4, OUTPUT); //set arduino port 4 as output. Port 7 is connceted to input 2
pinMode(7, OUTPUT);
pinMode(8, OUTPUT);

pinMode(0, INPUT);
pinMode(1, OUTPUT);

 if (tcs.begin()) {
 Serial.println("Found sensor");
 } else {
 Serial.println("No TCS34725 found ... check your connections");
 while (1); // halt!
 }

 // it helps convert RGB colors to what humans see
 for (int i=0; i<256; i++) {
 float x = i;
 x /= 255;
 x = pow(x, 2.5);
 x *= 255;

 }
 Serial.println("The Bus has left the station");
}

int LeftSensorValue;
int RightSensorValue;
int FrontSensorValue;

void loop() {
 uint16_t clear, red, green, blue;
 tcs.setInterrupt(false); // turn on LED
 delay(50); // takes 50ms to read
 tcs.getRawData(&red, &green, &blue, &clear);
 tcs.setInterrupt(true); // turn off LED
 LeftSensorValue=analogRead(0);

 RightSensorValue=analogRead(2);
 FrontSensorValue=analogRead(1);

 if (myBluetooth.available())
{
 if (FrontSensorValue<=440)
 {

 if ((clear >=900 && clear <= 20000))// && (red >=100 && red <= 400)&& (green >=100 && green <= 400) && (blue
>=100 && blue <= 400)) //yellow
 {
 Serial.print("There are people waiting");

 if (RightSensorValue >= 440)
 {
 brake();
 delay (4000);
 moveforward;
 delay (300);

 }

 else if (RightSensorValue<=440)
 {
 brake();
 delay (1000);
 moveforward ();
 delay (300);
 Serial.print("There are people getting off");

 }

 }

 else if (clear >=200 && clear <= 400) //&& (red >=110 && red <= 160)&& (green >=50 && green <= 110) && (blue
>=30 && blue <= 90)) //its black

 moveforward();

 }

 else if (FrontSensorValue>440)
 brake();
// }
// else if((clear >=900 && clear <= 20000) && a==3)
// Serial.println("This is the last stop");
}
void moveforward ()
{
 digitalWrite(2, LOW); // motors turn in FORWARD direction
 digitalWrite(4, HIGH);
 analogWrite(Enable1, 180);
 digitalWrite(7, LOW); // motors turn in FORWARD direction
 digitalWrite(8, HIGH);
 analogWrite(Enable2, 180);
 //delay (100);
}

void turnleft ()
{

 digitalWrite(2, HIGH); // motors turn in REVERSE direction
 digitalWrite(4, LOW);
 analogWrite(Enable1, 225); // full speed
 digitalWrite(7, LOW); // motors turn in FORWARD direction
 digitalWrite(8, HIGH);
 analogWrite(Enable2, 225); // full speed

}

void turnright ()
{
 digitalWrite(2, LOW); // motors turn in FORWARD direction
 digitalWrite(4, HIGH);
 analogWrite(Enable1, 0); //
 digitalWrite(7, HIGH); // motors turn in REVERSE direction
 digitalWrite(8, LOW);
 analogWrite(Enable2, 255); // full speed
 //delay(2500);
}

void brake ()
{
 digitalWrite(2, LOW); // motor brakes
 digitalWrite(4, LOW);
 analogWrite(Enable1, 220);
 digitalWrite(7, LOW); // motor brakes
 digitalWrite(8, LOW);
 analogWrite(Enable2, 220);

}

void reverse ()
{
 digitalWrite(2, HIGH); // motors turn in REVERSE direction
 digitalWrite(4, LOW);
 analogWrite(Enable1, 220);
 digitalWrite(7, HIGH); // motors turn in REVERSE direction
 digitalWrite(8, LOW);
 analogWrite(Enable2, 220);
 delay(250);
}

References

Predko, Michael. 123 PIC Microcontroller Experiments for the Evil Genius. New York:

McGraw-Hill, 2005. Print.

 Predko, Michael. 123 Robotics Experiments for the Evil Genius. New York: McGraw-Hill,

2004.Print.

 Oxer, Jonathan, and Hugh Blemings. Practical Arduino: Cool Projects for Open Source

Hardware. [Berkeley, CA]: Apress, 2009. Print.

 Banzi, Massimo. Getting Started with Arduino. Beijing: O'Reilly, 2011. Print.

 Evans, Brian. Beginning Arduino Programming. [New York]: Apress, 2011. Print.

Wheat, Dale. Arduino Internals. [United States]: Apress, 2011. Print.

 Karvinen, Kimmo, and Tero Karvinen. Make Arduino Bots and Gadgets: Learning by

Discovery. Beijing: O'Reilly, 2011. Print.

 Monk, Simon. Arduino + Android Projects for the Evil Genius: Control Arduino with Your

 Smartphone or Tablet. New York: McGraw-Hill, 2012. Print.

Acknowledgement

This project was done by Lulcasz Golbiewsk and Yeraldina Estrella. Christopher Rivera

built the chassis used for the project. Lulcasz Golbiewsk worked on the color sensor. Lulcasz

provided the code for reading colors. Yeraldina Estrella did the wiring diagram for both the IR

sensors and the H-bridge. Yeraldina wrote the code for controlling motor’s speed and directions as

well as IR sensor reading range for objects to be about 6 inches away from the IR sensor.

