Driving Distance

Consider a perfectly square, infinite grid. Define the driving distance between two points on the grid as the shortest path between the points when traveling along the gridlines.

Example: For points $\mathrm{p} 1=[0.4,1]$ and $\mathrm{p} 2=[0.9,3]$, the driving distance is $0.6+2+0.1=2.7$.

Goal:

1. Write a function ddist ($\mathrm{p} 1, \mathrm{p} 2$) that, given two points (each point is given as a list of the form $[\mathrm{x}, \mathrm{y}]$), returns the driving distance (as a float) between the points.

Test Cases:

1. points: $[2.4,1]$ and $[5,7.3]$, driving distance: 8.9
2. points: $[0,0.4]$ and $[1,0.6]$, driving distance: 2
