Benford's Law

Consider the values of $(2.04)^{n}$ for $n=0,1,2, \ldots$. An exponential function like this one can represent the growth of a bank account, a population, etc. Benford's law says that the leading digits of the sequence $(2.04)^{0},(2.04)^{1},(2.04)^{2}, \ldots$ do not all occur with the same chance.

Examples:

Number	Decimal Representation	Leading Digit
$(2.04)^{0}$	1	1
$(2.04)^{1}$	2.04	2
$(2.04)^{2}$	$4.161 \ldots$	4
$(2.04)^{3}$	$8.489 \ldots$	8
$(2.04)^{4}$	$17.318 \ldots$	1

Goal:

1. Write a function firstDigit(n) that, given a number n (not necessarily an integer), returns the leading digit of n. (Hint: Convert n to a string, find the desired digit, and convert the digit back into an integer.)
2. Use your function from part 1 to construct a histogram of the leading digits of the sequence $(2.04)^{n}$ for $n=0,1,2, \ldots, 100$.
3. Construct a histogram of the leading digits of a randomly generated sequence of length 100 and compare it to your result from part 2.
