
Interaction 31

 3 Interaction
 “ Always remember that this whole thing was started with a dream and a mouse. ”
—Walt Disney

 “ ! e quality of the imagination is to fl ow and not to freeze. ”
—Ralph Waldo Emerson

 In this chapter:
 – The “ fl ow ” of a program.
 – The meaning behind setup() and draw() .
 – Mouse interaction.
 – Your fi rst “ dynamic ” Processing program.
 – Handling events, such as mouse clicks and key presses.

 3.1 Go with the fl ow.
 If you have ever played a computer game, interacted with a digital art installation, or watched a
screensaver at three in the morning, you have probably given very little thought to the fact that the
software that runs these experiences happens over a period of time . ! e game starts, you save princess
so-and-so from the evil lord who-zee-ma-whats-it, achieve a high score, and the game ends.

 What I want to focus on in this chapter is that very “ fl ow ” over time. A game begins with a set of initial
conditions: you name your character, you start with a score of zero, and you start on level one. Let’s think
of this part as the program’s SETUP . After these conditions are initialized, you begin to play the game.
At every instant, the computer checks what you are doing with the mouse, calculates all the appropriate
behaviors for the game characters, and updates the screen to render all the game graphics. ! is cycle of
calculating and drawing happens over and over again, ideally 30 or more times per second for a smooth
animation. Let’s think of this part as the program’s DRAW .

 ! is concept is crucial to our ability to move beyond static designs (as in Chapter 2) with
 Processing .

 Step 1. Set starting conditions for the program one time.
 Step 2. Do something over and over and over and over (and over …) again until the program

quits.

 Consider how you might go about running a race.

 Step 1. Put on your sneakers and stretch. Just do this once, OK?
 Step 2. Put your right foot forward, then your left foot. Repeat this over and over as fast as

you can.
 Step 3. After 26 miles, quit.

32 Learning Processing

 What is a block of code?

 A block of code is any code enclosed within curly brackets.
 {
 A block of code

 }

 Blocks of code can be nested within each other, too.
 {
 A block of code
 {
 A block inside a block of code
 }

 }

 ! is is an important construct as it allows us to separate and manage our code as individual pieces
of a larger puzzle. A programming convention is to indent the lines of code within each block to
make the code more readable. Processing will do this for you via the Auto-Format option (Tools →
Auto-Format).
 Blocks of code will reveal themselves to be crucial in developing more complex logic, in terms of
 variables , conditionals , iteration , objects , and functions , as discussed in future chapters. For now, we
only need to look at two simple blocks: setup() and draw() .

 3.2 Our Good Friends, setup() and draw()
 Now that we are good and exhausted from running marathons in order to better learn programming,
we can take this newfound knowledge and apply it to our fi rst “ dynamic ” Processing sketch. Unlike
Chapter 2’s static examples, this program will draw to the screen continuously (i.e., until the user
quits). ! is is accomplished by writing two “ blocks of code ” setup() and draw() . Technically
speaking setup() and draw() are functions. We will get into a longer discussion of writing
our own functions in a later chapter; for now, we understand them to be two sections where we
write code.

 Exercise 3-1: In English, write out the “ fl ow ” for a simple computer game, such as Pong.
If you are not familiar with Pong, visit: http://en.wikipedia.org/wiki/Pong .

Interaction 33

 Let’s look at what will surely be strange-looking syntax for setup() and draw() . See Figure 3.1 .

void setup() {
 // Initialization code goes here
}

void draw() {
 // Code that runs forever goes here
}

What’s this? What are these for?

Curly brackets open and close a block of code.

 fi g. 3.1

void setup() {
 // Step 1a
 // Step 1b
 // Step 1c
}

void draw() {
 // Step 2a
 // Step 2b
}

Do once!

Skip to draw.

Loop over and over!

 fi g. 3.2

 Admittedly, there is a lot of stuff in Figure 3.1 that we are not entirely ready to learn about. We have
covered that the curly brackets indicate the beginning and end of a “ block of code, ” but why are there
parentheses after “ setup ” and “ draw ” ? Oh, and, my goodness, what is this “ void ” all about? It makes me
feel sad inside! For now, we have to decide to feel comfortable with not knowing everything all at once,
and that these important pieces of syntax will start to make sense in future chapters as more concepts
are revealed.

 For now, the key is to focus on how Figure 3.1 ’s structures control the fl ow of our program. ! is is shown
in Figure 3.2 .

 How does it work? When we run the program, it will follow our instructions precisely, executing the steps
in setup() fi rst, and then move on to the steps in draw() . ! e order ends up being something like:

 1a, 1b, 1c, 2a, 2b, 2a, 2b, 2a, 2b, 2a, 2b, 2a, 2b, 2a, 2b …

 Now, we can rewrite the Zoog example as a dynamic sketch. See Example 3–1 .

34 Learning Processing

 Example 3-1: Zoog as dynamic sketch

 void setup() {
 // Set the size of the window
 size(200,200);
 }

 void draw() {
 // Draw a white background
 background(255);

 // Set CENTER mode
 ellipseMode(CENTER);
 rectMode(CENTER);

 // Draw Zoog's body
 stroke(0);
 fill(150);
 rect(100,100,20,100);

 // Draw Zoog's head
 stroke(0);
 fill(255);
 ellipse(100,70,60,60);

 // Draw Zoog's eyes
 fill(0);
 ellipse(81,70,16,32);
 ellipse(119,70,16,32);

 // Draw Zoog's legs
 stroke(0);
 line(90,150,80,160);
 line(110,150,120,160);
 }

 Take the code from Example 3-1 and run it in Processing. Strange, right? You will notice that nothing in the
window changes. ! is looks identical to a static sketch! What is going on? All this discussion for nothing?

 Well, if we examine the code, we will notice that nothing in the draw() function varies . Each time
through the loop, the program cycles through the code and executes the identical instructions. So, yes,
the program is running over time redrawing the window, but it looks static to us since it draws the same
thing each time!

 Exercise 3-2: Redo the drawing you created at the end of Chapter 2 as a dynamic program.
Even though it will look the same, feel good about your accomplishment!

setup() runs fi rst one time. size() should always be
fi rst line of setup() since Processing will not be able
to do anything before the window size if specifi ed.

draw() loops continuously until you close the sketch
window.

fi g. 3.3

Interaction 35

 3.3 Variation with the Mouse
 Consider this. What if, instead of typing a number into one of the drawing functions, you could type “ the
mouse’s X location ” or “ the mouse’s Y location. ”

 line(the mouse's X location, the mouse's Y location, 100, 100);

 In fact, you can, only instead of the more descriptive language, you must use the keywords mouseX and
mouseY , indicating the horizontal or vertical position of the mouse cursor.

 Example 3-2: mouseX and mouseY

 void setup() {
 size(200,200);

 }

 void draw() {
 background(255);

 // Body
 stroke(0);
 fill(175);
 rectMode(CENTER);
 rect(mouseX,mouseY,50,50);
 }

 fi g. 3.4

 An Invisible Line of Code

 If you are following the logic of setup() and draw() closely, you might arrive at an interesting question:
 When does Processing actually display the shapes in the window? When do the new pixels appear?

 Exercise 3-3: Explain why we see a trail of rectangles if we move background() to setup() ,
leaving it out of draw() .

Try moving background()
to setup() and see the
difference! (Exercise 3–3)

mouseX is a keyword that the sketch replaces with
the horizontal position of the mouse.
mouseY is a keyword that the sketch replaces with
the vertical position of the mouse.

36 Learning Processing

 We could push this idea a bit further and create an example where a more complex pattern (multiple
shapes and colors) is controlled by mouseX and mouseY position. For example, we can rewrite
Zoog to follow the mouse. Note that Zoog’s body is located at the exact location of the mouse (mouseX,
mouseY), however, other parts of Zoog’s body are drawn relative to the mouse. Zoog’s head, for example,
is located at (mouseX, mouseY-30). ! e following example only moves Zoog’s body and head, as shown in
 Figure 3.5 .

 Example 3-3: Zoog as dynamic sketch with variation

 void setup() {
 size(200,200); // Set the size of the window
 smooth();
 }

 void draw() {
 background(255); // Draw a white background

 // Set ellipses and rects to CENTER mode
 ellipseMode(CENTER);
 rectMode(CENTER);

 // Draw Zoog's body
 stroke(0);
 fill(175);
 rect(mouseX,mouseY,20,100);

 // Draw Zoog's head
 stroke(0);
 fill(255);
 ellipse(mouseX,mouseY-30,60,60);

 On fi rst glance, one might assume the display is updated for every line of code that includes a
drawing function. If this were the case, however, we would see the shapes appear onscreen one at
a time. ! is would happen so fast that we would hardly notice each shape appearing individually.
However, when the window is erased every time background() is called, a somewhat unfortunate
and unpleasant result would occur: fl icker.
 Processing solves this problem by updating the window only at the end of every cycle through
 draw() . It is as if there were an invisible line of code that renders the window at the end of the
 draw() function.

 void draw() {
 // All of your code
 // Update Display Window -- invisible line of code we don’t see
 }

 ! is process is known as double-buff ering and, in a lower-level environment, you may fi nd that
you have to implement it yourself. Again, we take the time to thank Processing for making our
introduction to programming friendlier and simpler by taking care of this for us.

 fi g. 3.5

Zoog’s head is drawn above the body
at the location (mouseX, mouseY-30).

Zoog’s body is drawn at the location
(mouseX, mouseY).

Interaction 37

 // Draw Zoog's eyes
 fill(0);
 ellipse(81,70,16,32);
 ellipse(119,70,16,32);

 // Draw Zoog's legs
 stroke(0);
 line(90,150,80,160);
 line(110,150,120,160);
 }

 Exercise 3-4: Complete Zoog so that the rest of its body moves with the mouse.

mouseX ! 20
mouseY ! 50

1st time
through draw()

100 " 100 window
20 75

25

50

50

90

2nd time
through draw()

3rd time
through draw()

pmouseX ! 20
pmouseY ! 50
mouseX ! 75
mouseY ! 25

pmouseX ! 20
pmouseY ! 50
mouseX ! 50
mouseY ! 90

 fi g. 3.6

 In addition to mouseX and mouseY , you can also use pmouseX and pmouseY . ! ese two keywords stand
for the “ previous ” mouse X and mouse Y locations, that is, where the mouse was the last time we cycled
through draw() . ! is allows for some interesting interaction possibilities. For example, let’s consider what
happens if we draw a line from the previous mouse location to the current mouse location, as illustrated
in the diagram in Figure 3.6 .

 // Draw Zoog's eyes

 fill(0);

 ellipse(_______,_______ ,16,32);

 ellipse(_______,_______ ,16,32);

 // Draw Zoog's legs

stroke(0);

 line(_______,_______,_______,_______);

 line(_______,_______,_______,_______);

 Exercise 3-5: Recode your design so that shapes respond to the mouse (by varying color and
location).

38 Learning Processing

 • The absolute value of –2 is 2.
 • The absolute value of 2 is 2.

 In Processing, we can get the absolute value of the number by placing it inside the abs() function,
that is,

 • abs(# 5) → 5

 ! e speed at which the mouse is moving is therefore:

 • abs(mouseX - pmouseX)

 Update Exercise 3-7 so that the faster the user moves the mouse,
the wider the drawn line. Hint: look up strokeWeight() in the
Processing reference.

 stroke(255);

 _____________________________ (______________);

 line(pmouse X ,pmouse Y ,mouse X ,mouse Y);

 Example 3-4: Drawing a continuous line

 void setup() {
 size(200,200);
 background(255);
 smooth();
 }

 void draw() {
 stroke(0);
 line(pmouse X ,pmouse Y ,mouse X ,mouse Y);
 }

 Exercise 3-6: Fill in the blank in Figure 3.6 .

 fi g. 3.7

 By connecting the previous mouse location to the current mouse location with a line each time through
draw() , we are able to render a continuous line that follows the mouse. See Figure 3.7 .

 Exercise 3-7: ! e formula for calculating the speed of the mouse’s horizontal motion is the
absolute value of the diff erence between mouseX and pmouseX . ! e absolute value of a
number is defi ned as that number without its sign:

Draw a line from previous mouse
location to current mouse location.

Interaction 39

 3.4 Mouse Clicks and Key Presses
 We are well on our way to creating dynamic, interactive Processing sketches through the use the setup()
and draw() framework and the mouseX and mouseY keywords. A crucial form of interaction, however, is
missing—clicking the mouse!

 In order to learn how to have something happen when the mouse is clicked, we need to return to the
fl ow of our program. We know setup() happens once and draw() loops forever. When does a mouse
click occur? Mouse presses (and key presses) as considered events in Processing . If we want something
to happen (such as “ the background color changes to red ”) when the mouse is clicked, we need to add a
third block of code to handle this event.

 ! is event “ function ” will tell the program what code to execute when an event occurs. As with setup() ,
the code will occur once and only once. ! at is, once and only once for each occurrence of the event. An
event, such as a mouse click, can happen multiple times of course!

 ! ese are the two new functions we need:
 • mousePressed() —Handles mouse clicks.
 • keyPressed() —Handles key presses.

 ! e following example uses both event functions, adding squares whenever the mouse is pressed and
clearing the background whenever a key is pressed.

 Example 3-5: mousePressed() and keyPressed()

 void setup() {
 size(200,200);
 background(255);
 }

 void draw() {

 }

void mousePressed() {
 stroke(0);
 fill(175);
 rectMode(CENTER);
 rect(mouseX,mouseY,16,16);
 }

 void keyPressed() {
 background(255);
 }

 In Example 3-5, we have four functions that describe the program’s fl ow. ! e program starts in setup() where
the size and background are initialized. It continues into draw() , looping endlessly. Since draw() contains
no code, the window will remain blank. However, we have added two new functions: mousePressed() and

 fi g. 3.8
Nothing happens in draw() in this example!

Whenever a user clicks the mouse the code
written inside mousePressed() is executed.

Whenever a user presses a key the code
written inside keyPressed() is executed.

keyPressed() . ! e code inside these functions sits and waits. When the user clicks the mouse (or presses a
key), it springs into action, executing the enclosed block of instructions once and only once.

 Exercise 3-8: Add “ background(255); ” to the draw() function. Why does the program stop
working?

 We are now ready to bring all of these elements together for Zoog.
 • Zoog’s entire body will follow the mouse.
 • Zoog’s eye color will be determined by mouse location.
 • Zoog’s legs will be drawn from the previous mouse location to the current mouse location.
 • When the mouse is clicked, a message will be displayed in the message window: “ Take me to your

leader! ”

 Note the addition in Example 3–6 of the function frameRate(). frameRate() , which requires an integer
between 1 and 60, enforces the speed at which Processing will cycle through draw(). frameRate (30) ,
for example, means 30 frames per second, a traditional speed for computer animation. If you do not
include frameRate() , Processing will attempt to run the sketch at 60 frames per second. Since computers
run at diff erent speeds, frameRate() is used to make sure that your sketch is consistent across multiple
computers.

 ! is frame rate is just a maximum, however. If your sketch has to draw one million rectangles, it may take
a long time to fi nish the draw cycle and run at a slower speed.

 Example 3-6: Interactive Zoog

 void setup() {
 // Set the size of the window

 size(200,200);
 smooth();
 frameRate(30) ;
}

 void draw() {
 // Draw a black background
 background(255);

 // Set ellipses and rects to CENTER mode
 ellipseMode(CENTER);
 rectMode(CENTER);

 // Draw Zoog's body
 stroke(0);
 fill(175);
 rect(mouseX,mouseY,20,100);

 // Draw Zoog's head
 stroke(0);
 fill(255);
 ellipse(mouse X ,mouse Y -30,60,60);

 fi g. 3.9

The frame rate is set to
30 frames per second.

40 Learning Processing

Interaction 41

 // Draw Zoog's eyes
 fill(mo useX,0,mouseY);
 ellipse(mouse X-19,mouseY-30,16,32);
 ellipse(mouse X + 19,mouse Y-30,16,32);

 // Draw Zoog's legs
 stroke(0);
 line(mouse X-10,mouseY + 50,pmouse X-10,pmouseY + 60);
 line(mouse X + 10,mouse Y + 50,pmouse X + 10,pmouse Y + 60);
 }

 void mousePressed() {
 println("Take me to your leader! ");
 }

The legs are drawn according to
the mouse location and the previous
mouse location.

The eye color is determined by the mouse location.

	Front Cover
	Learning Processing
	Copyright Page
	Contents
	Acknowledgments
	Introduction
	What is this book?
	Who is this book for?
	What is Processing ?
	But shouldn’t I be Learning __________ ?
	Write in this book!
	How should I read this book?
	Is this a textbook?
	Will this be on the test?
	Do you have a web site?
	Take It One Step at a Time
	Algorithms

	Lesson 1: The Beginning
	Chapter 1: Pixels
	1.1 Graph Paper
	1.2 Simple Shapes
	1.3 Grayscale Color
	1.4 RGB Color
	1.5 Color Transparency
	1.6 Custom Color Ranges

	Chapter 2: Processing
	2.1 Processing to the Rescue
	2.2 How do I get Processing?
	2.3 The Processing Application
	2.4 The Sketchbook
	2.5 Coding in Processing
	2.6 Errors
	2.7 The Processing Reference
	2.8 The "Play" Button
	2.9 Your First Sketch
	2.10 Publishing Your Program

	Chapter 3: Interaction
	3.1 Go with the flow
	3.2 Our Good Friends, setup() and draw()
	3.3 Variation with the Mouse
	3.4 Mouse Clicks and Key Presses

	Lesson One Project

	Lesson 2: Everything You Need to Know
	Chapter 4: Variables
	4.1 What is a Variable?
	4.2 Variable Declaration and Initialization
	4.3 Using a Variable
	4.4 Many Variables
	4.5 System Variables
	4.6 Random: Variety is the spice of life
	4.7 Variable Zoog

	Chapter 5: Conditionals
	5.1 Boolean Expressions
	5.2 Conditionals: If, Else, Else If
	5.3 Conditionals in a Sketch
	5.4 Logical Operators
	5.5 Multiple Rollovers
	5.6 Boolean Variables
	5.7 A Bouncing Ball
	5.8 Physics 101

	Chapter 6: Loops
	6.1 What is iteration? I mean, what is iteration? Seriously, what is iteration?
	6.2 "WHILE" Loop, the Only Loop You Really Need
	6.3 "Exit" Conditions
	6.4 "FOR" Loop
	6.5 Local vs. Global Variables (AKA "Variable Scope")
	6.6 Loop Inside the Main Loop
	6.7 Zoog grows arms

	Lesson Two Project

	Lesson 3: Organization
	Chapter 7: Functions
	7.1 Break It Down
	7.2 "User Defined" Functions
	7.3 Defining a Function
	7.4 Simple Modularity
	7.5 Arguments
	7.6 Passing a Copy
	7.7 Return Type
	7.8 Zoog Reorganization

	Chapter 8: Objects
	8.1 I'm down with OOP
	8.2 Using an Object
	8.3 Writing the Cookie Cutter
	8.4 Using an Object: The Details
	8.5 Putting It Together with a Tab
	8.6 Constructor Arguments
	8.7 Objects are data types too!
	8.8 Object-Oriented Zoog

	Lesson Three Project

	Lesson 4: More of the Same
	Chapter 9: Arrays
	9.1 Arrays, why do we care?
	9.2 What is an array?
	9.3 Declaring and Creating an Array
	9.4 Initializing an Array
	9.5 Array Operations
	9.6 Simple Array Example: The Snake
	9.7 Arrays of Objects
	9.8 Interactive Objects
	9.9 Processing's Array Functions
	9.10 One Thousand and One Zoogs

	Lesson Four Project

	Lesson 5: Putting It All Together
	Chapter 10: Algorithms
	10.1 Where have we been? Where are we going?
	10.2 Algorithm: Dance to the beat of your own drum
	10.3 From Idea to Parts
	10.4 Part 1: The Catcher
	10.5 Part 2: Intersection
	10.6 Part 3: The Timer
	10.7 Part 4: Raindrops
	10.8 Integration: Puttin' on the Ritz
	10.9 Getting Ready for Act II

	Lesson Five Project
	Chapter 11: Debugging
	11.1 Tip #1: Take a break
	11.2 Tip #2: Get another human being involved
	11.3 Tip #3: Simplify
	11.4 Tip #4: println() is your friend

	Chapter 12: Libraries
	12.1 Libraries
	12.2 Built-in Libraries
	12.3 Contributed Libraries

	Lesson 6: The World Revolves Around You
	Chapter 13: Mathematics
	13.1 Mathematics and Programming
	13.2 Modulus
	13.3 Random Numbers
	13.4 Probability Review
	13.5 Event Probability in Code
	13.6 Perlin Noise
	13.7 Angles
	13.8 Trigonometry
	13.9 Oscillation
	13.10 Recursion
	13.11 Two-Dimensional Arrays

	Chapter 14: Translation and Rotation (in 3D!)
	14.1 The Z-Axis
	14.2 P3D vs. OPENGL
	14.3 Vertex Shapes
	14.4 Custom 3D Shapes
	14.5 Simple Rotation
	14.6 Rotation Around Different Axes
	14.7 Scale
	14.8 The Matrix: Pushing and Popping
	14.9 A Processing Solar System

	Lesson Six Project

	Lesson 7: Pixels Under a Microscope
	Chapter 15: Images
	15.1 Getting Started with Images
	15.2 Animation with an Image
	15.3 My Very First Image Processing Filter
	15.4 An Array of Images
	15.5 Pixels, Pixels, and More Pixels
	15.6 Intro to Image Processing
	15.7 Our Second Image Processing Filter, Making Our Own Tint()
	15.8 Writing to Another PImage Object's Pixels
	15.9 Level II: Pixel Group Processing
	15.10 Creative Visualization

	Chapter 16: Video
	16.1 Before Processing
	16.2 Live Video 101
	16.3 Recorded Video
	16.4 Software Mirrors
	16.5 Video as Sensor, Computer Vision
	16.6 Background Removal
	16.7 Motion Detection
	16.8 Computer Vision Libraries
	16.9 The Sandbox

	Lesson Seven Project

	Lesson 8: The Outside World
	Chapter 17: Text
	17.1 Where do Strings come from?
	17.2 What is a String?
	17.3 Displaying Text
	17.4 Text Animation
	17.5 Text Mosaic
	17.6 Rotating Text
	17.7 Display text character by character

	Chapter 18: Data Input
	18.1 Manipulating Strings
	18.2 Splitting and Joining
	18.3 Reading and Writing Text Files
	18.4 Text Parsing
	18.5 Text Analysis
	18.6 Asynchronous Requests
	18.7 Beginner XML
	18.8 Using the Processing XML Library
	18.9 The Yahoo API
	18.10 Sandbox

	Chapter 19: Data Streams
	19.1 Synchronous vs. Asynchronous
	19.2 Creating a Server
	19.3 Creating a Client
	19.4 Broadcasting
	19.5 Multi-User Communication, Part 1: The Server
	19.6 Multi-User Communication, Part 2: The Client
	19.7 Multi-User Communication, Part 3: All Together Now
	19.8 Serial Communication
	19.9 Serial communication with handshaking
	19.10 Serial Communication with Strings

	Lesson Eight Project

	Lesson 9: Making Noise
	Chapter 20: Sound
	20.1 Really Simple Sound
	20.2 Getting Started with Sonia and Minim
	20.3 Basic Sound Playback
	20.4 A Bit Fancier Sound Playback
	20.5 Live input
	20.6 Sound Thresholding

	Chapter 21: Exporting
	21.1 Web Applets
	21.2 Stand-Alone Applications
	21.3 High-Resolution PDFs
	21.4 Images/saveFrame()
	21.5 MovieMaker

	Lesson Nine Project

	Lesson 10: Beyond Processing
	Chapter 22: Advanced Object-Oriented Programming
	22.1 Encapsulation
	22.2 Inheritance
	22.3 An Inheritance Example: SHAPES
	22.4 Polymorphism
	22.5 Overloading

	Chapter 23: Java
	23.1 Revealing the Wizard
	23.2 If we did not have Processing, what would our code look like?
	23.3 Exploring the Java API
	23.4 Other Useful Java Classes: ArrayList
	23.5 Other Useful Java Classes: Rectangle
	23.6 Exception (Error) Handling
	23.7 Java Outside of Processing

	Appendix: Common Errors
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

