1 Pixels

A journey of a thousand miles begins with a single step.”
—Lao-tzu

In this chapter:

— Specifying pixel coordinates.

— Basic shapes: point, line, rectangle, ellipse.
— Color: grayscale, “RGB.”

— Color transparency.

Note that we are not doing any programming yet in this chapter! We are just dipping our feet in the water and
getting comfortable with the idea of creating onscreen graphics with text-based commands, that is, ‘code”!

1.1 Graph Paper

'This book will teach you how to program in the context of computational media, and it will use the
development environment Processing (http://www.processing.org) as the basis for all discussion and
examples. But before any of this becomes relevant or interesting, we must first channel our eighth grade
selves, pull out a piece of graph paper, and draw a line. The shortest distance between two points is a good
old fashioned line, and this is where we begin, with two points on that graph paper.

X-0xis > ke (4.5)

5
4
/// 3
4 2
/ 1
0
1 y-oxis
PointA 0 123 4 7
(x,0)
fig. 1.1

Figure 1.1 shows a line between point A (1,0) and point B (4,5). If you wanted to direct a friend of yours
to draw that same line, you would give them a shout and say “draw a line from the point one-zero to

the point four-five, please.” Well, for the moment, imagine your friend was a computer and you wanted
to instruct this digital pal to display that same line on its screen. The same command applies (only this
time you can skip the pleasantries and you will be required to employ a precise formatting). Here, the
instruction will look like this:

line(1,0,4,5);

Congratulations, you have written your first line of computer code! We will get to the precise formatting
of the above later, but for now, even without knowing too much, it should make a fair amount of sense.
We are providing a command (which we will refer to as a “function”) for the machine to follow entitled
“line.” In addition, we are specifying some arguments for how that line should be drawn, from point

4 Learning Processing

A (0,1) to point B (4,5). If you think of that line of code as a sentence, the function is a verb and the
arguments are the objects of the sentence. The code sentence also ends with a semicolon instead of a period.

Draw a line from 0,4 to 4,5

fig. 1.2

'The key here is to realize that the computer screen is nothing more than a fancier piece of graph paper.
Each pixel of the screen is a coordinate—two numbers, an “x” (horizontal) and a “y” (vertical)—that
determine the location of a point in space. And it is our job to specify what shapes and colors should
appear at these pixel coordinates.

Nevertheless, there is a catch here. The graph paper from eighth grade (“Cartesian coordinate system”)
placed (0,0) in the center with the y-axis pointing up and the x-axis pointing to the right (in the positive
direction, negative down and to the left). The coordinate system for pixels in a computer window,
however, is reversed along the y-axis. (0,0) can be found at the top left with the positive direction to the
right horizontally and down vertically. See Figure 1.3.

4+— x-oxis —p 4+— xoxls —p
—>
+
+ + T (O/O) T
> .
-axis -axLs
r— U |+ U
l (0,0)
Elghth grade Computer
fig. 1.3

Exercise 1-1: Looking at how we wrote the instruction for line “line(1,0,4,5);” how would
you guess you would write an instruction to draw a rectangle? A circle? A triangle? Write
& out the instructions in English and then translate it into “code.”

English:
Code:
English:
Code:
English:
Code:

Come back later and see how your guesses matched up with how Processing actually works.

Pixels 5

1.2 Simple Shapes

The vast majority of the programming examples in this book will be visual in nature. You may ultimately
learn to develop interactive games, algorithmic art pieces, animated logo designs, and (insert your own
category here) with Processing, but at its core, each visual program will involve setting pixels. The simplest
way to get started in understanding how this works is to learn to draw primitive shapes. This is not unlike
how we learn to draw in elementary school, only here we do so with code instead of crayons.

Let’s start with the four primitive shapes shown in Figure 1.4.

Point Ling Rectangle Ellipse

fig. 1.4
For each shape, we will ask ourselves what information is required to specify the location and size (and
later color) of that shape and learn how Processing expects to receive that information. In each of the
diagrams below (Figures 1.5 through 1.11), assume a window with a width of 10 pixels and height of
10 pixels. This isn't particularly realistic since when we really start coding we will most likely work with
much larger windows (10 X 10 pixels is barely a few millimeters of screen space). Nevertheless for
demonstration purposes, it is nice to work with smaller numbers in order to present the pixels as they
might appear on graph paper (for now) to better illustrate the inner workings of each line of code.

X-OXLS

o 1 2 3 4 5 &6 F g 9

o

1

2

= « y
%axés * , \4 /
. 5 w Polnt (4,5)

7

g

9
fig. 1.5

A point is the easiest of the shapes and a good place to start. To draw a point, we only need an x and y
coordinate as shown in Figure 1.5. A line isn't terribly difficult either. A line requires two points, as shown
in Figure 1.6.

X-0xis

0 1 2 =2 4 5 & F £ 9

o)
1
2
. 4 ,
y-axis Polnt A Polnt B
< 5 \
x Y. X
> line (1,2,2,2);
g
9

Polnt A (1,2)

fig. 1.6

6 Learning Processing

Once we arrive at drawing a rectangle, things become a bit more complicated. In Processing, a rectangle is
specified by the coordinate for the top left corner of the rectangle, as well as its width and height
(see Figure 1.7).

TDPLf‘(Ct X-0XLS
01 2 3 4 5 &6 F g8 9

o

1

5 wiolth helght

> VY

i heiat rect (2,2,5,4);

Yot g

. 7

e top left top left

>

b4 : y

9

N —
width

fig. 1.7

However, a second way to draw a rectangle involves specifying the centerpoint, along with width
and height as shown in Figure 1.8. If we prefer this method, we first indicate that we want to use the
“CENTER” mode before the instruction for the rectangle itself. Note that Processing is case-sensitive.
Incidentally, the default mode is “CORNER,” which is how we began as illustrated in Figure 1.7.

o
1
> rectkMode (CENTER);
~ rect (3,3,5,5);
- F— height
4)
y—axés width
5 center center
& X ﬂ
‘7
b4
9
center
(22)
fig. 1.8

Finally, we can also draw a rectangle with two points (the top left corner and the bottom right corner).
The mode here is “CORNERS” (see Figure 1.9).

Pixels 7

top Left (5,5)

01234\5é72j

0 \
1 \
2 \
2 rectMode (CORNERS)
= rect (5,5,2,7);
. f \ N bottom YL@Mtﬂ
F top left top left bottom right x
€ < Vi
9
bottom vight (£,7)
fig. 1.9

Once we have become comfortable with the concept of drawing a rectangle, an ellipse is a snap. In fact, it
is identical to rect() with the difference being that an ellipse is drawn where the bounding box! (as shown
in Figure 1.11) of the rectangle would be. The default mode for ellipse() is “CENTER?”, rather than
“CORNER?” as with rect(). See Figure 1.10.

061 2 3 4 5 & F g 9 0 1 2 2 4 5 &6 F 2 9
o o
1 1
2 2
2 2
A ellipseMode (CENTER); 4 ellipseMode (CORNER);
5 ellipse (2,2,5,5); 5 ellipse (2,2,44);
& &
7 7
g g
9 9
61 2 3 4 5 & F g2 9
0
1
2
4 ellipseMode (CORNERS);
5 ellipse (5,5,2,7);
& b
7
g
9
fig. 1.10

It is important to acknowledge that in Figure 1.10, the ellipses do not look particularly circular. Processing
has a built-in methodology for selecting which pixels should be used to create a circular shape. Zoomed
in like this, we get a bunch of squares in a circle-like pattern, but zoomed out on a computer screen,

we get a nice round ellipse. Later, we will see that Processing gives us the power to develop our own

A bounding box of a shape in computer graphics is the smallest rectangle that includes all the pixels of that shape. For example, the
bounding box of a circle is shown in Figure 1.11.

8 Learning Processing

Clrele’s bounding box

7N
N

fig. 1.11

algorithms for coloring in individual pixels (in fact, we can already imagine how we might do this using
“point” over and over again), but for now, we are content with allowing the “ellipse” statement to do the

hard work.

Certainly, point, line, ellipse, and rectangle are not the only shapes available in the Processing library

of functions. In Chapter 2, we will see how the Processing reference provides us with a full list of
available drawing functions along with documentation of the required arguments, sample syntax, and
imagery. For now, as an exercise, you might try to imagine what arguments are required for some other
shapes (Figure 1.12):

triangle()
arc()
quad()

curve()

A LS

Trinngle Arc Quad Curve
fig. 1.12

f Exercise 1-2: Using the blank graph below, draw the primitive shapes specified by the code.

[4
1line(0,0,9,6); X-0xis

point (0,2) ; 01 2 2 4 5 & F € 9

point (0,4) ;

rectMode (CORNER) ;

rect (5,0,4,3);
ellipseMode (CENTER) ; yaxis
ellipse(3,7,4,4);

oo M ® O & W O R O

Pixels 9

i Exercise 1-3: Reverse engineer a list of primitive shape drawing instructions for the diagram below.

01 2 2 4 5 & F 2 9

IR SR VR N G ¢

A a4
|

Note: There LS more thaw one corvect answer!

K M oA RN RO

1.3 Grayscale Color

As we learned in Section 1.2, the primary building block for placing shapes onscreen is a pixel
coordinate. You politely instructed the computer to draw a shape at a specific location with a specific size.
Nevertheless, a fundamental element was missing—color.

In the digital world, precision is required. Saying “Hey, can you make that circle bluish-green?” will

not do. Therefore, color is defined with a range of numbers. Let’s start with the simplest case: dlack and
white or grayscale. In grayscale terms, we have the following: 0 means black, 255 means white. In between,
every other number—50, 87,162,209, and so on—is a shade of gray ranging from black to white. See
Figure 1.13.

0 50 e 162 209 255
fig. 1.13

Does 0-255 seem arbitary to you?

Color for a given shape needs to be stored in the computer’s memory. This memory is just a long
sequence of 0’s and 1’s (a whole bunch of on or off switches.) Each one of these switches is a

10 Learning Processing

bit, eight of them together is a &yze. Imagine if we had eight bits (one byte) in sequence—how
many ways can we configure these switches? The answer is (and doing a little research into binary
numbers will prove this point) 256 possibilities, or a range of numbers between 0 and 255. We will
use eight bit color for our grayscale range and 24 bit for full color (eight bits for each of the red,
green, and blue color components; see Section 1.4).

Understanding how this range works, we can now move to setting specific grayscale colors for the shapes
we drew in Section 1.2. In Processing, every shape has a stroke() or a fill() or both. The stroke() is the
outline of the shape, and the fill() is the interior of that shape. Lines and points can only have stroke(), for
obvious reasons.

If we forget t i lor, .
we forget to specify a color The background color is gray.

Processing will use black (0) for the

stroke() and white (255) for the : :

fill() by default. Note that we are The outline of the rectangle is black

now using more realistic numbers

for the pixel locations, assuming a The interior of the rectangle is white = L———

larger window of size 200 X 200
pixels. See Figure 1.14.
fig. 1.14
rect (50,40, 75,100) ;

By adding the stroke() and fill() functions éefore the shape is drawn, we can set the color. It is much like
instructing your friend to use a specific pen to draw on the graph paper. You would have to tell your
friend defore he or she starting drawing, not after.

There is also the function background(), which sets a background color for the window where shapes will
be rendered.

Example 1-1: Stroke and fill

background (255) ;
stroke (0) ;
£i11(150) ;

rect (50,50,75,100) ;

stroke() or fill() can be eliminated with the noStroke() or noFill() functions.
Our instinct might be to say “stroke(0)” for no outline, however, it is
important to remember that 0 is not “nothing”, but rather denotes the color
black. Also, remember not to eliminate both—with noStroke() and noFill(),
nothing will appear!

fig. 1.15

Example 1-2: nofFill ()

background (255) ;
stroke (0) ;
noFill () ;

i nofill()leaves the shape
ellipse(60,60,100,100) ;

with only an outline

If we draw two shapes at one time, Processing will always use the
most recently specified stroke() and fill(), reading the code from top to
bottom. See Figure 1.17.

background (150) ;

stroke (0) ;

line(0,0,100,100) ;

stroke (255) ;

noFill () ;

rect (25,25,50,50) ;
fig. 1.17

Pixels

n

fig. 1.16

i Exercise 1-4: Try to guess what the instructions would be for the following screenshot.

[4

12 Learning Processing

1.4 RGB Color

A nostalgic look back at graph paper helped us learn the fundamentals for pixel locations and size.
Now that it is time to study the basics of digital color, we search for another childhood memory to get
us started. Remember finger painting? By mixing three “primary” colors, any color could be generated.
Swirling all colors together resulted in a muddy brown. The more paint you added, the darker it got.

Digital colors are also constructed by mixing three primary colors, but it works differently from paint.
First, the primaries are different: red, green, and blue (i.e., “RGB” color). And with color on the screen,
you are mixing light, not paint, so the mixing rules are different as well.

* Red + green = vyellow

* Red + Dblue = purple

* Green + blue = cyan (blue-green)
* Red + green + blue = white

* No colors = black

This assumes that the colors are all as bright as possible, but of course, you have a range of color available, so
some red plus some green plus some blue equals gray, and a bit of red plus a bit of blue equals dark purple.

While this may take some getting used to, the more you program and experiment with RGB color, the more
it will become instinctive, much like swirling colors with your fingers. And of course you can't say “Mix
some red with a bit of blue,” you have to provide an exact amount. As with grayscale, the individual color
elements are expressed as ranges from 0 (none of that color) to 255 (as much as possible), and they are listed
in the order R, G, and B. You will get the hang of RGB color mixing through experimentation, but next we
will cover some code using some common colors.

Note that this book will only show you black and white versions of each Processing sketch, but everything
is documented online in full color at hz£p.//www.learningprocessing.com with RGB color diagrams found
specifically at: betp.//learningprocessing.com/color.

Example 1-3: RGB color

background (255) ;
noStroke () ;

fig. 1.18

£111(255,0,0) ; Bright red
ellipse(20,20,16,16);

£i11(127,0,0); Dark red
ellipse(40,20,16,16) ;

£i11(255,200,200) ; Pink (pale red).
ellipse(60,20,16,16) ;

Processing also has a color selector to aid in choosing colors. Access this via TOOLS (from the

menu bar) — COLOR SELECTOR. See Figure 1.19.

Pixels

eee Color Selector

H:|233|°
S: 55 %

B: 81 %

R: 93
G: 105
B: 209

. # 5D69D1

fig. 1.19

Exercise 1-5: Complete the following program. Guess what RGB values to use (_you will be

13

able to check your results in Processing after reading the next chapter). You could also use the

L
i color selector, shown in Figure 1.19.

[4

£i11¢ , ,)i Bright blue
ellipse(20,40,16,16) ;

£i11¢(, ,)i Dark purple
ellipse(40,40,16,16) ;
£i11 ¢ , .)i Yellow

ellipse(60,40,16,16) ;

i Exercise 1-6: What color will each of the following lines of code generate?

[4 £411(0,100,0) ;

£i11(100) ;

stroke (0,0,200) ;

stroke (225) ;

stroke (255,255,0) ;

stroke (0,255,255) ;

stroke (200,50,50) ;

14 Learning Processing

1.5 Color Transparency

In addition to the red, green, and blue components of each color, there is an additional optional fourth
component, referred to as the color’s “alpha.” Alpha means transparency and is particularly useful when
you want to draw elements that appear partially see-through on top of one another. The alpha values for

an image are sometimes referred to collectively as the “alpha channel” of an image.

It is important to realize that pixels are not literally transparent, this is simply a convenient illusion that
is accomplished by blending colors. Behind the scenes, Processing takes the color numbers and adds a
percentage of one to a percentage of another, creating the optical perception of blending. (If you are
interested in programming “rose-colored” glasses, this is where you would begin.)

Alpha values also range from 0 to 255, with 0 being completely transparent (i.e., 0% opaque) and 255
completely opaque (i.e., 100% opaque). Example 1-4 shows a code example that is displayed in
Figure 1.20.

Example 1-4: Alpha transparency

background (0) ;
noStroke () ;

£i11(0,0,255) ; No fourth argument means 100% opacity.
rect (0,0,100,200) ;

£i11(255,0,0,255) ; 255 means 100% opacity.
rect (0,0,200,40) ;

£i11(255,0,0,191) ; 75% Opacity fig. 1.20
rect (0,50,200,40) ;

£111(255,0,0,127) ; 50% 0pac|ty
rect (0,100,200,40) ;

£i11(255,0,0,63) ; 25% opacity
rect (0,150,200,40) ;

1.6 Custom Color Ranges

RGB color with ranges of 0 to 255 is not the only way you can handle color in Processing. Behind
the scenes in the computer’s memory, color is afways talked about as a series of 24 bits (or 32 in
the case of colors with an alpha). However, Processing will let us think about color any way we like,
and translate our values into numbers the computer understands. For example, you might prefer to
think of color as ranging from 0 to 100 (like a percentage). You can do this by specifying a custom
colorMode().

Pixels 15

colorMode (RGB, 100) ; With celorMode() you can set your own color range.

'The above function says: “OK, we want to think about color in terms of red, green, and blue. The range of

RGB values will be from 0 to 100.”

Although it is rarely convenient to do so, you can also have different ranges for each color component:

colorMode (RGB,100,500,10,255) ;

Now we are saying “Red values go from 0 to 100, green from 0 to 500, blue from 0 to 10, and alpha from
0 to 2557

Finally, while you will likely only need RGB color for all of your programming needs, you can also specify
colors in the HSB (hue, saturation, and brightness) mode. Without getting into too much detail, HSB
color works as follows:

* Hue—The color type, ranges from 0 to 360 by default (think of 360° on a color “wheel”).
* Saturation—The vibrancy of the color, 0 to 100 by default.
* Brightness—The, well, brightness of the color, 0 to 100 by default.

Exercise 1-7: Design a creature using simple shapes and colors. Draw the creature by hand
using only points, lines, rectangles, and ellipses. Then attempt to write the code for the
creature, using the Processing commands covered in this chapter: point(), lines(), rect(),

- ellipse(), stroke(), and fill(). In the next chapter, you will have a chance to test your results
by running your code in Processing.

16 Learning Processing

Example 1-5 shows my version of Zoog, with the outputs shown in Figure 1.21.

Example 1-5: Zoog

ellipseMode(CENTER):
rectMode(CENTER):

stroke(0):

All{150):
rect(100,100,20,100):
All(255):
ellipse(100,70,60,60):
All(o):

ellipse(8170,16,32). fig. 1.21
ellipse(119,70,16,32):

stroke(0):

line(90,150.80,160)-

line(110,150,120,160):

'The sample answer is my Processing-born being, named Zoog. Over the course of the first nine chapters
of this book, we will follow the course of Zoog’s childhood. The fundamentals of programming will be
demonstrated as Zoog grows up. We will first learn to display Zoog, then to make an interactive Zoog
and animated Zoog, and finally to duplicate Zoog in a world of many Zoogs.

I suggest you design your own “thing” (note that there is no need to limit yourself to a humanoid or
creature-like form; any programmatic pattern will do) and recreate all of the examples throughout

the first nine chapters with your own design. Most likely, this will require you to only change a small
portion (the shape rendering part) of each example. This process, however, should help solidify your
understanding of the basic elements required for computer programs—Variables, Conditionals, Loops,
Functions, Objects, and Arrays—and prepare you for when Zoog matures, leaves the nest, and ventures
oft into the more advanced topics from Chapter 10 on in this book.

	Front Cover
	Learning Processing
	Copyright Page
	Contents
	Acknowledgments
	Introduction
	What is this book?
	Who is this book for?
	What is Processing ?
	But shouldn’t I be Learning __________ ?
	Write in this book!
	How should I read this book?
	Is this a textbook?
	Will this be on the test?
	Do you have a web site?
	Take It One Step at a Time
	Algorithms

	Lesson 1: The Beginning
	Chapter 1: Pixels
	1.1 Graph Paper
	1.2 Simple Shapes
	1.3 Grayscale Color
	1.4 RGB Color
	1.5 Color Transparency
	1.6 Custom Color Ranges

	Chapter 2: Processing
	2.1 Processing to the Rescue
	2.2 How do I get Processing?
	2.3 The Processing Application
	2.4 The Sketchbook
	2.5 Coding in Processing
	2.6 Errors
	2.7 The Processing Reference
	2.8 The "Play" Button
	2.9 Your First Sketch
	2.10 Publishing Your Program

	Chapter 3: Interaction
	3.1 Go with the flow
	3.2 Our Good Friends, setup() and draw()
	3.3 Variation with the Mouse
	3.4 Mouse Clicks and Key Presses

	Lesson One Project

	Lesson 2: Everything You Need to Know
	Chapter 4: Variables
	4.1 What is a Variable?
	4.2 Variable Declaration and Initialization
	4.3 Using a Variable
	4.4 Many Variables
	4.5 System Variables
	4.6 Random: Variety is the spice of life
	4.7 Variable Zoog

	Chapter 5: Conditionals
	5.1 Boolean Expressions
	5.2 Conditionals: If, Else, Else If
	5.3 Conditionals in a Sketch
	5.4 Logical Operators
	5.5 Multiple Rollovers
	5.6 Boolean Variables
	5.7 A Bouncing Ball
	5.8 Physics 101

	Chapter 6: Loops
	6.1 What is iteration? I mean, what is iteration? Seriously, what is iteration?
	6.2 "WHILE" Loop, the Only Loop You Really Need
	6.3 "Exit" Conditions
	6.4 "FOR" Loop
	6.5 Local vs. Global Variables (AKA "Variable Scope")
	6.6 Loop Inside the Main Loop
	6.7 Zoog grows arms

	Lesson Two Project

	Lesson 3: Organization
	Chapter 7: Functions
	7.1 Break It Down
	7.2 "User Defined" Functions
	7.3 Defining a Function
	7.4 Simple Modularity
	7.5 Arguments
	7.6 Passing a Copy
	7.7 Return Type
	7.8 Zoog Reorganization

	Chapter 8: Objects
	8.1 I'm down with OOP
	8.2 Using an Object
	8.3 Writing the Cookie Cutter
	8.4 Using an Object: The Details
	8.5 Putting It Together with a Tab
	8.6 Constructor Arguments
	8.7 Objects are data types too!
	8.8 Object-Oriented Zoog

	Lesson Three Project

	Lesson 4: More of the Same
	Chapter 9: Arrays
	9.1 Arrays, why do we care?
	9.2 What is an array?
	9.3 Declaring and Creating an Array
	9.4 Initializing an Array
	9.5 Array Operations
	9.6 Simple Array Example: The Snake
	9.7 Arrays of Objects
	9.8 Interactive Objects
	9.9 Processing's Array Functions
	9.10 One Thousand and One Zoogs

	Lesson Four Project

	Lesson 5: Putting It All Together
	Chapter 10: Algorithms
	10.1 Where have we been? Where are we going?
	10.2 Algorithm: Dance to the beat of your own drum
	10.3 From Idea to Parts
	10.4 Part 1: The Catcher
	10.5 Part 2: Intersection
	10.6 Part 3: The Timer
	10.7 Part 4: Raindrops
	10.8 Integration: Puttin' on the Ritz
	10.9 Getting Ready for Act II

	Lesson Five Project
	Chapter 11: Debugging
	11.1 Tip #1: Take a break
	11.2 Tip #2: Get another human being involved
	11.3 Tip #3: Simplify
	11.4 Tip #4: println() is your friend

	Chapter 12: Libraries
	12.1 Libraries
	12.2 Built-in Libraries
	12.3 Contributed Libraries

	Lesson 6: The World Revolves Around You
	Chapter 13: Mathematics
	13.1 Mathematics and Programming
	13.2 Modulus
	13.3 Random Numbers
	13.4 Probability Review
	13.5 Event Probability in Code
	13.6 Perlin Noise
	13.7 Angles
	13.8 Trigonometry
	13.9 Oscillation
	13.10 Recursion
	13.11 Two-Dimensional Arrays

	Chapter 14: Translation and Rotation (in 3D!)
	14.1 The Z-Axis
	14.2 P3D vs. OPENGL
	14.3 Vertex Shapes
	14.4 Custom 3D Shapes
	14.5 Simple Rotation
	14.6 Rotation Around Different Axes
	14.7 Scale
	14.8 The Matrix: Pushing and Popping
	14.9 A Processing Solar System

	Lesson Six Project

	Lesson 7: Pixels Under a Microscope
	Chapter 15: Images
	15.1 Getting Started with Images
	15.2 Animation with an Image
	15.3 My Very First Image Processing Filter
	15.4 An Array of Images
	15.5 Pixels, Pixels, and More Pixels
	15.6 Intro to Image Processing
	15.7 Our Second Image Processing Filter, Making Our Own Tint()
	15.8 Writing to Another PImage Object's Pixels
	15.9 Level II: Pixel Group Processing
	15.10 Creative Visualization

	Chapter 16: Video
	16.1 Before Processing
	16.2 Live Video 101
	16.3 Recorded Video
	16.4 Software Mirrors
	16.5 Video as Sensor, Computer Vision
	16.6 Background Removal
	16.7 Motion Detection
	16.8 Computer Vision Libraries
	16.9 The Sandbox

	Lesson Seven Project

	Lesson 8: The Outside World
	Chapter 17: Text
	17.1 Where do Strings come from?
	17.2 What is a String?
	17.3 Displaying Text
	17.4 Text Animation
	17.5 Text Mosaic
	17.6 Rotating Text
	17.7 Display text character by character

	Chapter 18: Data Input
	18.1 Manipulating Strings
	18.2 Splitting and Joining
	18.3 Reading and Writing Text Files
	18.4 Text Parsing
	18.5 Text Analysis
	18.6 Asynchronous Requests
	18.7 Beginner XML
	18.8 Using the Processing XML Library
	18.9 The Yahoo API
	18.10 Sandbox

	Chapter 19: Data Streams
	19.1 Synchronous vs. Asynchronous
	19.2 Creating a Server
	19.3 Creating a Client
	19.4 Broadcasting
	19.5 Multi-User Communication, Part 1: The Server
	19.6 Multi-User Communication, Part 2: The Client
	19.7 Multi-User Communication, Part 3: All Together Now
	19.8 Serial Communication
	19.9 Serial communication with handshaking
	19.10 Serial Communication with Strings

	Lesson Eight Project

	Lesson 9: Making Noise
	Chapter 20: Sound
	20.1 Really Simple Sound
	20.2 Getting Started with Sonia and Minim
	20.3 Basic Sound Playback
	20.4 A Bit Fancier Sound Playback
	20.5 Live input
	20.6 Sound Thresholding

	Chapter 21: Exporting
	21.1 Web Applets
	21.2 Stand-Alone Applications
	21.3 High-Resolution PDFs
	21.4 Images/saveFrame()
	21.5 MovieMaker

	Lesson Nine Project

	Lesson 10: Beyond Processing
	Chapter 22: Advanced Object-Oriented Programming
	22.1 Encapsulation
	22.2 Inheritance
	22.3 An Inheritance Example: SHAPES
	22.4 Polymorphism
	22.5 Overloading

	Chapter 23: Java
	23.1 Revealing the Wizard
	23.2 If we did not have Processing, what would our code look like?
	23.3 Exploring the Java API
	23.4 Other Useful Java Classes: ArrayList
	23.5 Other Useful Java Classes: Rectangle
	23.6 Exception (Error) Handling
	23.7 Java Outside of Processing

	Appendix: Common Errors
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

