
Processing 17

 2 Processing
 “ Computers in the future may weigh no more than 1.5 tons. ”
 —Popular Mechanics, 1949

 “ Take me to your leader. ”
 —Zoog, 2008

In this chapter:
 – Downloading and installing Processing .
 – Menu options.
 – A Processing “ sketchbook. ”
 – Writing code.
 – Errors.
 – The Processing reference.
 – The “ Play ” button.
 – Your fi rst sketch.
 – Publishing your sketch to the web.

 2.1 Processing to the Rescue
 Now that we conquered the world of primitive shapes and RGB color, we are ready to implement this
knowledge in a real world programming scenario. Happily for us, the environment we are going to use is
 Processing , free and open source software developed by Ben Fry and Casey Reas at the MIT Media Lab
in 2001. (See this book’s introduction for more about Processing ’s history.)
 Processing ’s core library of functions for drawing graphics to the screen will provide for immediate visual
feedback and clues as to what the code is doing. And since its programming language employs all the
same principles, structures, and concepts of other languages (specifi cally Java), everything you learn with
 Processing is real programming. It is not some pretend language to help you get started; it has all the
fundamentals and core concepts that all languages have.
 After reading this book and learning to program, you might continue to use Processing in your academic
or professional life as a prototyping or production tool. You might also take the knowledge acquired
here and apply it to learning other languages and authoring environments. You may, in fact, discover
that programming is not your cup of tea; nonetheless, learning the basics will help you become a better-
informed technology citizen as you work on collaborative projects with other designers and programmers.
 It may seem like overkill to emphasize the why with respect to Processing . After all, the focus of this
book is primarily on learning the fundamentals of computer programming in the context of computer
graphics and design. It is, however, important to take some time to ponder the reasons behind selecting
a programming language for a book, a class, a homework assignment, a web application, a software suite,
and so forth. After all, now that you are going to start calling yourself a computer programmer at cocktail
parties, this question will come up over and over again. I need programming in order to accomplish
project X , what language and environment should I use?
 I say, without a shadow of doubt, that for you, the beginner, the answer is Processing . Its simplicity is ideal
for a beginner. At the end of this chapter, you will be up and running with your fi rst computational design
and ready to learn the fundamental concepts of programming. But simplicity is not where Processing

18 Learning Processing

ends. A trip through the Processing online exhibition (http://processing.org/exhibition/) will uncover a
wide variety of beautiful and innovative projects developed entirely with Processing . By the end of this
book, you will have all the tools and knowledge you need to take your ideas and turn them into real
world software projects like those found in the exhibition. Processing is great both for learning and for
producing, there are very few other environments and languages you can say that about.

 2.2 How do I get Processing?
 For the most part, this book will assume that you have a basic working knowledge of how to operate
your personal computer. ! e good news, of course, is that Processing is available for free download. Head
to http://www.processing.org/ and visit the download page. If you are a Windows user, you will see two
options: “ Windows (standard) ” and “ Windows (expert). ” Since you are reading this book, it is quite
likely you are a beginner, in which case you will want the standard version. ! e expert version is for those
who have already installed Java themselves. For Mac OS X, there is only one download option. ! ere is
also a Linux version available. Operating systems and programs change, of course, so if this paragraph is
obsolete or out of date, visit the download page on the site for information regarding what you need.

 ! e Processing software will arrive as a compressed fi le. Choose a nice directory to store the application
(usually “ c:\Program Files\ ” on Windows and in “ Applications ” on Mac), extract the fi les there, locate the
 “ Processing ” executable, and run it.

 Exercise 2-1: Download and install Processing.

 2.3 The Processing Application
 ! e Processing development environment is a simplifi ed environment for writing computer code, and is just
about as straightforward to use as simple text editing software (such as TextEdit or Notepad) combined
with a media player. Each sketch (Processing programs are referred to as “ sketches ”) has a fi lename, a place
where you can type code, and some buttons for saving, opening, and running sketches. See Figure 2.1 .

Stop New Export

SaveOpen

Type code here

Sketch
name

Message
window

Run

 fi g. 2.1

 Once you have opened the example, click the “ run ” button as indicated in Figure 2.3 . If a new window
pops open running the example, you are all set! If this does not occur, visit the online FAQ “ Processing
won’t start! ” for possible solutions. ! e page can be found at this direct link: http://www.processing.org/faq/
bugs.html#wontstart .

 Exercise 2-2: Open a sketch from the Processing examples and run it.

 Processing programs can also be viewed full-screen (known as “ present mode ” in Processing). ! is
is available through the menu option: Sketch → Present (or by shift-clicking the run button). Present will
not resize your screen resolution. If you want the sketch to cover your entire screen, you must use your
screen dimensions in size() .

 2.4 The Sketchbook
 Processing programs are informally referred to as sketches , in the spirit of quick graphics prototyping, and
we will employ this term throughout the course of this book. ! e folder where you store your sketches
is called your “sketchbook.” Technically speaking, when you run a sketch in processing , it runs as a local
application on your computer. As we will see both in this Chapter and in Chapter 18, Processing also
allows you to export your sketches as web applets (mini-programs that run embedded in a browser) or as
platform-specifi c stand-alone applications (that could, for example, be made available for download).

 Once you have confi rmed that the Processing examples work, you are ready to start creating your own
sketches. Clicking the “ new ” button will generate a blank new sketch named by date. It is a good idea to
 “ Save as ” and create your own sketch name. (Note: Processing does not allow spaces or hyphens, and your
sketch name cannot start with a number.)

 fi g. 2.2

 To make sure everything is working, it is a good idea to try running one of the Processing examples. Go
to FILE → EXAMPLES → (pick an example, suggested: Topics → Drawing → ContinuousLines) as
shown in Figure 2.2 .

 fi g. 2.3

Processing 19

20 Learning Processing

 When you fi rst ran Processing , a default “ Processing ” directory was created to store all sketches in the
 “ My Documents ” folder on Windows and in “ Documents ” on OS X. Although you can select any
directory on your hard drive, this folder is the default. It is a pretty good folder to use, but it can be
changed by opening the Processing preferences (which are available under the FILE menu).

 Each Processing sketch consists of a folder (with the same name as your sketch) and a fi le with the
extension “ pde. ” If your Processing sketch is named MyFirstProgram , then you will have a folder named
MyFirstProgram with a fi le MyFirstProgram.pde inside. ! e “ pde ” fi le is a plain text fi le that contains the
source code. (Later we will see that Processing sketches can have multiple pde’s, but for now one will do.)
Some sketches will also contain a folder called “ data ” where media elements used in the program, such as
image fi les, sound clips, and so on, are stored.

 Exercise 2-3: Type some instructions from Chapter 1 into a blank sketch. Note how certain
words are colored. Run the sketch. Does it do what you thought it would?

 2.5 Coding in Processing
 It is fi nally time to start writing some code, using the elements discussed in Chapter 1. Let’s go over some
basic syntax rules. ! ere are three kinds of statements we can write:

 • Function calls
 • Assignment operations
 • Control structures

 For now, every line of code will be a function call. See Figure 2.4 . We will explore the other two categories
in future chapters. Functions have a name, followed by a set of arguments enclosed in parentheses.
Recalling Chapter 1, we used functions to describe how to draw shapes (we just called them “ commands ”
or “ instructions ”). ! inking of a function call as a natural language sentence, the function name is the verb
(“ draw ”) and the arguments are the objects (“ point 0,0 ”) of the sentence. Each function call must always
end with a semicolon. See Figure 2.5 .

Ends with
semi-colon

Arguments in
parenthesesFunction

name

Line (0,0,200,200);

 fi g. 2.4

 We have learned several functions already, including background(), stroke(), fi ll(), noFill (), noStroke(),
point(), line(), rect(), ellipse(), rectMode(), and ellipseMode() . Processing will execute a sequence of
functions one by one and fi nish by displaying the drawn result in a window. We forgot to learn one
very important function in Chapter 1, however— size(). size() specifi es the dimensions of the window
you want to create and takes two arguments, width and height. ! e size() function should always
be fi rst.

size(320,240); Opens a window of width 320 and height 240.

 ! ere are a few additional items to note.

 • The Processing text editor will color known words (sometimes referred to as “ reserved ” words or
 “ keywords ”). These words, for example, are the drawing functions available in the Processing library,
 “ built-in ” variables (we will look closely at the concept of variables in Chapter 3) and constants, as
well as certain words that are inherited from the Java programming language.

 • Sometimes, it is useful to display text information in the Processing message window (located at the
bottom). This is accomplished using the println() function. println() takes one argument, a String
of characters enclosed in quotes (more about Strings in Chapter 14). When the program runs,
 Processing displays that String in the message window (as in Figure 2.5) and in this case the String
is “ Take me to your leader! ” This ability to print to the message window comes in handy when
attempting to debug the values of variables (see Chapter 12, Debugging).

 • The number in the bottom left corner indicates what line number in the code is selected.
 • You can write “ comments ” in your code. Comments are lines of text that Processing ignores when

the program runs. You should use them as reminders of what the code means, a bug you intend to
fix, or a to do list of items to be inserted, and so on. Comments on a single line are created with two
forward slashes, // . Comments over multiple lines are marked by /* followed by the comments and
ending with */ .

 Let’s write a fi rst example (see Figure 2.5).

Output
window

Code

Print
messages

 fi g. 2.5

Processing 21

22 Learning Processing

 // ! is is a comment on one line
 /* ! is is a comment that
spans several lines
of code */

 A quick word about comments. You should get in the habit right now of writing comments in your
code. Even though our sketches will be very simple and short at fi rst, you should put comments in for
everything. Code is very hard to read and understand without comments. You do not need to have a
comment for every line of code, but the more you include, the easier a time you will have revising and
reusing your code later. Comments also force you to understand how code works as you are programming.
If you do not know what you are doing, how can you write a comment about it?

 Comments will not always be included in the text here. ! is is because I fi nd that, unlike in an actual
program, code comments are hard to read in a book. Instead, this book will often use code “ hints ” for
additional insight and explanations. If you look at the book’s examples on the web site, though, comments
will always be included. So, I can’t emphasize it enough, write comments!

 // A comment about this code

 line(0,0,100,100);

 Exercise 2-4: Create a blank sketch. Take your code from the end of Chapter 1 and type it in
the Processing window. Add comments to describe what the code is doing. Add a println()
statement to display text in the message window. Save the sketch. Press the “ run ” button. Does it
work or do you get an error?

 2.6 Errors
 ! e previous example only works because we did not make any errors or typos. Over the course of a
programmer’s life, this is quite a rare occurrence. Most of the time, our fi rst push of the play button will
not be met with success. Let’s examine what happens when we make a mistake in our code in Figure 2.6 .

 Figure 2.6 shows what happens when you have a typo— “ elipse ” instead of “ ellipse ” on line 9. If there is
an error in the code when the play button is pressed, Processing will not open the sketch window, and will
instead display the error message. ! is particular message is fairly friendly, telling us that we probably
meant to type “ ellipse. ” Not all Processing error messages are so easy to understand, and we will continue
to look at other errors throughout the course of this book. An Appendix on common errors in Processing
is also included at the end of the book.

A hint about this code!

Processing 23

Line 9 highlighted

Line 9

Error message

Error message
again!

 fi g. 2.6

 Processing is case sensitive!

 If you type Ellipse instead of ellipse , that will also be considered an error.

 In this instance, there was only one error. If multiple errors occur, Processing will only alert you to the fi rst
one it fi nds (and presumably, once that error is corrected, the next error will be displayed at run time).
! is is somewhat of an unfortunate limitation, as it is often useful to have access to an entire list of errors
when fi xing a program. ! is is simply one of the trade-off s we get in a simplifi ed environment such as
 Processing. Our life is made simpler by only having to look at one error at a time, nevertheless we do not
have access to a complete list.

 ! is fact only further emphasizes the importance of incremental development discussed in the
book’s introduction. If we only implement one feature at a time, we can only make one mistake at
a time.

 Exercise 2-5: Try to make some errors happen on purpose. Are the error messages what you
expect?

24 Learning Processing

 size(200,200); _______________________________________

 background(); _______________________________________

 stroke 255; ______________________________________ _

 fill(150) ______________________________ _________

 rectMode(center); _______________________________________

 rect(100,100,50); _______________________________________

 Exercise 2-6: Fix the errors in the following code.

 2.7 The Processing Reference
 ! e functions we have demonstrated— ellipse(), line(), stroke() , and so on—are all part of Processing’s
library. How do we know that “ ellipse ” isn’t spelled “ elipse ” , or that rect() takes four arguments (an
 “ x coordinate, ” a “ y coordinate, ” a “ width, ” and a “ height ”)? A lot of these details are intuitive, and this
speaks to the strength of Processing as a beginner’s programming language. Nevertheless, the only way
to know for sure is by reading the online reference. While we will cover many of the elements from the
reference throughout this book, it is by no means a substitute for the reference and both will be required
for you to learn Processing .

 ! e reference for Processing can be found online at the offi cial web site (http://www.processing.org) under
the “ reference ” link. ! ere, you can browse all of the available functions by category or alphabetically.
If you were to visit the page for rect() , for example, you would fi nd the explanation shown in
 Figure 2.7 .

 As you can see, the reference page off ers full documentation for the function rect() , including:
 • Name —The name of the function.
 • Examples —Example code (and visual result, if applicable).
 • Description —A friendly description of what the function does.
 • Syntax —Exact syntax of how to write the function.
 • Parameters —These are the elements that go inside the parentheses. It tells you what kind of data

you put in (a number, character, etc.) and what that element stands for. (This will become clearer as
we explore more in future chapters.) These are also sometimes referred to as “ arguments. ”

 • Returns —Sometimes a function sends something back to you when you call it (e.g., instead of
asking a function to perform a task such as draw a circle, you could ask a function to add two
numbers and return the answer to you). Again, this will become more clear later.

 • Usage —Certain functions will be available for Processing applets that you publish online (“ Web ”)
and some will only be available as you run Processing locally on your machine (“ Application ”).

 • Related Methods —A list of functions often called in connection with the current function. Note
that “ functions ” in Java are often referred to as “ methods. ” More on this in Chapter 6.

Processing 25

 Processing also has a very handy “ fi nd in reference ” option. Double-click on any keyword to select it and
go to to HELP → FIND IN REFERENCE (or select the keyword and hit SHIFT ! CNTRL ! F).

 Exercise 2-7: Using the Processing reference, try implementing two functions that we have
not yet covered in this book. Stay within the “ Shape ” and “ Color (setting) ” categories.

 Exercise 2-8: Using the reference, fi nd a function that allows you to alter the thickness of a
line. What arguments does the function take? Write example code that draws a line one pixel
wide, then fi ve pixels wide, then 10 pixels wide.

 2.8 The “ Play ” Button
 One of the nice qualities of Processing is that all one has to do to run a program is press the “ play ” button.
It is a nice metaphor and the assumption is that we are comfortable with the idea of playing animations,

 fi g. 2.7

26 Learning Processing

movies, music, and other forms of media. Processing programs output media in the form of real-time
computer graphics, so why not just play them too?

 Nevertheless, it is important to take a moment and consider the fact that what we are doing here is not
the same as what happens on an iPod or TiVo. Processing programs start out as text, they are translated
into machine code, and then executed to run. All of these steps happen in sequence when the play button
is pressed. Let’s examine these steps one by one, relaxed in the knowledge that Processing handles the hard
work for us.

 Step 1. Translate to Java. Processing is really Java (this will become more evident in a detailed
discussion in Chapter 23). In order for your code to run on your machine, it must fi rst be
translated to Java code.

 Step 2. Compile into Java byte code. ! e Java code created in Step 1 is just another text fi le (with
the .java extension instead of .pde). In order for the computer to understand it, it needs to
be translated into machine language. ! is translation process is known as compilation. If you
were programming in a diff erent language, such as C, the code would compile directly into
machine language specifi c to your operating system. In the case of Java, the code is compiled
into a special machine language known as Java byte code. It can run on diff erent platforms
(Mac, Windows, cellphones, PDAs, etc.) as long as the machine is running a “ Java Virtual
Machine. ” Although this extra layer can sometimes cause programs to run a bit slower than
they might otherwise, being cross-platform is a great feature of Java. For more on how this
works, visit http://java.sun.com or consider picking up a book on Java programming (after
you have fi nished with this one).

 Step 3. Execution. ! e compiled program ends up in a JAR fi le. A JAR is a Java archive fi le
that contains compiled Java programs (“ classes ”), images, fonts, and other data fi les.
! e JAR fi le is executed by the Java Virtual Machine and is what causes the display
window to appear.

 2.9 Your First Sketch
 Now that we have downloaded and installed Processing , understand the basic menu and interface
elements, and have gotten familiar with the online reference, we are ready to start coding. As I
briefl y mentioned in Chapter 1, the fi rst half of this book will follow one example that illustrates the
foundational elements of programming: variables, arrays, conditionals, loops, functions, and objects . Other
examples will be included along the way, but following just one will reveal how the basic elements behind
computer programming build on each other.

 ! e example will follow the story of our new friend Zoog, beginning with a static rendering with simple
shapes. Zoog’s development will include mouse interaction, motion, and cloning into a population of
many Zoogs. While you are by no means required to complete every exercise of this book with your own
alien form, I do suggest that you start with a design and after each chapter, expand the functionality of
that design with the programming concepts that are explored. If you are at a loss for an idea, then just
draw your own little alien, name it Gooz, and get programming! See Figure 2.8 .

Processing 27

 Example 2-1: Zoog again

 size(200,200); // Set the size of the window
 background(255); // Draw a black background
 smooth();

 // Set ellipses and rects to CENTER mode
 ellipseMode(CENTER);
 rectMode(CENTER);

 // Draw Zoog’s body
 stroke(0);
 fill(150);
 rect(100,100,20,100);

 // Draw Zoog’s head
 fill(255);
 ellipse(100,70,60,60);

 // Draw Zoog’s eyes
 fill(0);
 ellipse(81,70,16,32);
 ellipse(119,70,16,32);

 // Draw Zoog’s legs
 stroke(0);
 line(90,150,80,160);
 line(110,150,120,160);

 Let’s pretend, just for a moment, that you fi nd this Zoog design to be so astonishingly gorgeous that you
just cannot wait to see it displayed on your computer screen. (Yes, I am aware this may require a fairly
signifi cant suspension of disbelief.) To run any and all code examples found in this book, you have two
choices:

 • Retype the code manually.
 • Visit the book’s web site (http://www.learningprocessing.com), find the example by its number, and

copy/paste (or download) the code.

 Certainly option #2 is the easier and less time-consuming one and I recommend you use the site as a
resource for seeing sketches running in real-time and grabbing code examples. Nonetheless, as you start
learning, there is real value in typing the code yourself. Your brain will sponge up the syntax and logic
as you type and you will learn a great deal by making mistakes along the way. Not to mention simply
running the sketch after entering each new line of code will eliminate any mystery as to how the sketch
works.

 You will know best when you are ready for copy /paste. Keep track of your progress and if you start
running a lot of examples without feeling comfortable with how they work, try going back to manual
typing.

 fi g. 2.8

Zoog’s body.

Zoog’s head.

Zoog’s eyes.

Zoog’s legs.

The function smooth() enables “anti-aliasing”
which smooths the edges of the shapes.
no smooth() disables anti-aliasing.

28 Learning Processing

 Exercise 2-9: Using what you designed in Chapter 1, implement your own screen drawing,
using only 2D primitive shapes— arc() , curve() , ellipse() , line() , point() , quad() , rect() ,
 triangle() —and basic color functions— background() , colorMode() , fi ll() , noFill() ,
 noStroke() , and stroke() . Remember to use size() to specify the dimensions of your window.
Suggestion: Play the sketch after typing each new line of code. Correct any errors or typos
along the way.

 2.10 Publishing Your Program
 After you have completed a Processing sketch, you can publish it to the web as a Java applet. ! is will
become more exciting once we are making interactive, animated applets, but it is good to practice with a
simple example. Once you have fi nished Exercise 2-9 and determined that your sketch works, select
FILE → EXPORT.

 Note that if you have errors in your program, it will not export properly, so always test by running fi rst!

 A new directory named “ applet ” will be created in the sketch folder and displayed, as shown in Figure 2.9 .

 fi g. 2.9

 You now have the necessary fi les for publishing your applet to the web.

 • index.html —The HTML source for a page that displays the applet.
 • loading.gif —An image to be displayed while the user loads the applet (Processing will supply a

default one, but you can create your own).
 • zoog.jar —The compiled applet itself.
 • zoog.java —The translated Java source code (looks like your Processing code, but has a few extra

things that Java requires. See Chapter 20 for details.)
 • zoog.pde —Your Processing source.

Processing 29

 To see the applet working, double-click the “ index.html ” fi le which should launch a page in your default
web browser. See Figure 2.10 . To get the applet online, you will need web server space and FTP software
(or you can also use a Processing sketch sharing site such as http://www.openprocessing.org). You can fi nd
some tips for getting started at this book’s web site.

 fi g. 2.10

 Exercise 2-10: Export your sketch as an applet. View the sketch in the browser (either locally
or by uploading). 00002 00002

	Front Cover
	Learning Processing
	Copyright Page
	Contents
	Acknowledgments
	Introduction
	What is this book?
	Who is this book for?
	What is Processing ?
	But shouldn’t I be Learning __________ ?
	Write in this book!
	How should I read this book?
	Is this a textbook?
	Will this be on the test?
	Do you have a web site?
	Take It One Step at a Time
	Algorithms

	Lesson 1: The Beginning
	Chapter 1: Pixels
	1.1 Graph Paper
	1.2 Simple Shapes
	1.3 Grayscale Color
	1.4 RGB Color
	1.5 Color Transparency
	1.6 Custom Color Ranges

	Chapter 2: Processing
	2.1 Processing to the Rescue
	2.2 How do I get Processing?
	2.3 The Processing Application
	2.4 The Sketchbook
	2.5 Coding in Processing
	2.6 Errors
	2.7 The Processing Reference
	2.8 The "Play" Button
	2.9 Your First Sketch
	2.10 Publishing Your Program

	Chapter 3: Interaction
	3.1 Go with the flow
	3.2 Our Good Friends, setup() and draw()
	3.3 Variation with the Mouse
	3.4 Mouse Clicks and Key Presses

	Lesson One Project

	Lesson 2: Everything You Need to Know
	Chapter 4: Variables
	4.1 What is a Variable?
	4.2 Variable Declaration and Initialization
	4.3 Using a Variable
	4.4 Many Variables
	4.5 System Variables
	4.6 Random: Variety is the spice of life
	4.7 Variable Zoog

	Chapter 5: Conditionals
	5.1 Boolean Expressions
	5.2 Conditionals: If, Else, Else If
	5.3 Conditionals in a Sketch
	5.4 Logical Operators
	5.5 Multiple Rollovers
	5.6 Boolean Variables
	5.7 A Bouncing Ball
	5.8 Physics 101

	Chapter 6: Loops
	6.1 What is iteration? I mean, what is iteration? Seriously, what is iteration?
	6.2 "WHILE" Loop, the Only Loop You Really Need
	6.3 "Exit" Conditions
	6.4 "FOR" Loop
	6.5 Local vs. Global Variables (AKA "Variable Scope")
	6.6 Loop Inside the Main Loop
	6.7 Zoog grows arms

	Lesson Two Project

	Lesson 3: Organization
	Chapter 7: Functions
	7.1 Break It Down
	7.2 "User Defined" Functions
	7.3 Defining a Function
	7.4 Simple Modularity
	7.5 Arguments
	7.6 Passing a Copy
	7.7 Return Type
	7.8 Zoog Reorganization

	Chapter 8: Objects
	8.1 I'm down with OOP
	8.2 Using an Object
	8.3 Writing the Cookie Cutter
	8.4 Using an Object: The Details
	8.5 Putting It Together with a Tab
	8.6 Constructor Arguments
	8.7 Objects are data types too!
	8.8 Object-Oriented Zoog

	Lesson Three Project

	Lesson 4: More of the Same
	Chapter 9: Arrays
	9.1 Arrays, why do we care?
	9.2 What is an array?
	9.3 Declaring and Creating an Array
	9.4 Initializing an Array
	9.5 Array Operations
	9.6 Simple Array Example: The Snake
	9.7 Arrays of Objects
	9.8 Interactive Objects
	9.9 Processing's Array Functions
	9.10 One Thousand and One Zoogs

	Lesson Four Project

	Lesson 5: Putting It All Together
	Chapter 10: Algorithms
	10.1 Where have we been? Where are we going?
	10.2 Algorithm: Dance to the beat of your own drum
	10.3 From Idea to Parts
	10.4 Part 1: The Catcher
	10.5 Part 2: Intersection
	10.6 Part 3: The Timer
	10.7 Part 4: Raindrops
	10.8 Integration: Puttin' on the Ritz
	10.9 Getting Ready for Act II

	Lesson Five Project
	Chapter 11: Debugging
	11.1 Tip #1: Take a break
	11.2 Tip #2: Get another human being involved
	11.3 Tip #3: Simplify
	11.4 Tip #4: println() is your friend

	Chapter 12: Libraries
	12.1 Libraries
	12.2 Built-in Libraries
	12.3 Contributed Libraries

	Lesson 6: The World Revolves Around You
	Chapter 13: Mathematics
	13.1 Mathematics and Programming
	13.2 Modulus
	13.3 Random Numbers
	13.4 Probability Review
	13.5 Event Probability in Code
	13.6 Perlin Noise
	13.7 Angles
	13.8 Trigonometry
	13.9 Oscillation
	13.10 Recursion
	13.11 Two-Dimensional Arrays

	Chapter 14: Translation and Rotation (in 3D!)
	14.1 The Z-Axis
	14.2 P3D vs. OPENGL
	14.3 Vertex Shapes
	14.4 Custom 3D Shapes
	14.5 Simple Rotation
	14.6 Rotation Around Different Axes
	14.7 Scale
	14.8 The Matrix: Pushing and Popping
	14.9 A Processing Solar System

	Lesson Six Project

	Lesson 7: Pixels Under a Microscope
	Chapter 15: Images
	15.1 Getting Started with Images
	15.2 Animation with an Image
	15.3 My Very First Image Processing Filter
	15.4 An Array of Images
	15.5 Pixels, Pixels, and More Pixels
	15.6 Intro to Image Processing
	15.7 Our Second Image Processing Filter, Making Our Own Tint()
	15.8 Writing to Another PImage Object's Pixels
	15.9 Level II: Pixel Group Processing
	15.10 Creative Visualization

	Chapter 16: Video
	16.1 Before Processing
	16.2 Live Video 101
	16.3 Recorded Video
	16.4 Software Mirrors
	16.5 Video as Sensor, Computer Vision
	16.6 Background Removal
	16.7 Motion Detection
	16.8 Computer Vision Libraries
	16.9 The Sandbox

	Lesson Seven Project

	Lesson 8: The Outside World
	Chapter 17: Text
	17.1 Where do Strings come from?
	17.2 What is a String?
	17.3 Displaying Text
	17.4 Text Animation
	17.5 Text Mosaic
	17.6 Rotating Text
	17.7 Display text character by character

	Chapter 18: Data Input
	18.1 Manipulating Strings
	18.2 Splitting and Joining
	18.3 Reading and Writing Text Files
	18.4 Text Parsing
	18.5 Text Analysis
	18.6 Asynchronous Requests
	18.7 Beginner XML
	18.8 Using the Processing XML Library
	18.9 The Yahoo API
	18.10 Sandbox

	Chapter 19: Data Streams
	19.1 Synchronous vs. Asynchronous
	19.2 Creating a Server
	19.3 Creating a Client
	19.4 Broadcasting
	19.5 Multi-User Communication, Part 1: The Server
	19.6 Multi-User Communication, Part 2: The Client
	19.7 Multi-User Communication, Part 3: All Together Now
	19.8 Serial Communication
	19.9 Serial communication with handshaking
	19.10 Serial Communication with Strings

	Lesson Eight Project

	Lesson 9: Making Noise
	Chapter 20: Sound
	20.1 Really Simple Sound
	20.2 Getting Started with Sonia and Minim
	20.3 Basic Sound Playback
	20.4 A Bit Fancier Sound Playback
	20.5 Live input
	20.6 Sound Thresholding

	Chapter 21: Exporting
	21.1 Web Applets
	21.2 Stand-Alone Applications
	21.3 High-Resolution PDFs
	21.4 Images/saveFrame()
	21.5 MovieMaker

	Lesson Nine Project

	Lesson 10: Beyond Processing
	Chapter 22: Advanced Object-Oriented Programming
	22.1 Encapsulation
	22.2 Inheritance
	22.3 An Inheritance Example: SHAPES
	22.4 Polymorphism
	22.5 Overloading

	Chapter 23: Java
	23.1 Revealing the Wizard
	23.2 If we did not have Processing, what would our code look like?
	23.3 Exploring the Java API
	23.4 Other Useful Java Classes: ArrayList
	23.5 Other Useful Java Classes: Rectangle
	23.6 Exception (Error) Handling
	23.7 Java Outside of Processing

	Appendix: Common Errors
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

