Hard Drive Technologies

Chapter 11

Overview

In this chapter, you will learn how to

- Explain how hard drives work
- Identify and explain the PATA and SATA hard drive interfaces
- Identify and explain the SCSI hard drive interfaces
- Describe how to protect data with RAID
- Install hard drives
- Configure CMOS and install drivers
- Troubleshoot hard drive installation

Mike Meyers' CompTIA A+®
Guide to
Managing and
Troubleshooting PCs
Fourth Edition

Historical/Conceptual

How Hard Drives Work

The Platter-based Hard Drive

- A traditional hard disk drive (HDD) is composed of individual disks or platters.
- The platters are made up of aluminum and coated with a magnetic medium.
- Two tiny read/write heads service each platter.

Mike Meyers' CompTIA A+®
Guide to
Managing and
Troubleshooting PCs
Fourth Edition

The Platter-based Hard Drive (continued)

Figure 1: Inside the hard drive

The Hard Drive

- The closer the read/write heads are to the platter, the more densely the data can be packed on to the drive.
- Hard drives use a tiny, heavily filtered aperture to equalize the air pressure between the exterior and interior of the hard drive.
- Platters spin between 3,500 and 15,000 revolutions per minute (RPM).

The Hard Drive (continued)

Figure 2: Read/write heads on actuator arms

Data Encoding

Hard drives store data in tiny magnetic fields called fluxes

The flux switches back and forth through a process called flux reversal

- Hard drives read these flux reversals at a very high speed when accessing or writing data
 - Fluxes in one direction are read as 0 and the other direction as 1

Data Encoding (continued)

Encoding methods used by hard drives are

- Run Length Limited (RLL)
 - Data is stored using "runs" that are unique patterns of ones and zeroes
 - Can have runs of about seven fluxes
- Partial Response Maximum Likelihood (PRML)
 - Uses a powerful, intelligent circuitry to analyze each flux reversal
 - Can have runs of about 16 to 20 fluxes
 - Significant increase in capacity (up to 1 TB)

Arm Movement in the Hard Drive

- The stepper motor technology and the voice coil technology are used for moving the head actuator
 - Moves the arms in fixed increments or steps
 - Only seen in floppies today
- The voice coil technology uses a permanent magnet surrounding the coil on the head actuator to move the arm
 - Automatically parks drive over non-data area when power removed
 - This is how modern HDDs work

Geometry

- Geometry is used to determine the location of the data on the hard drive
 - CHS (cylinders, heads, sectors)
- Used to be critical to know geometry
 - Had to enter into CMOS manually
- Today geometry stored on hard drive
 - BIOS can query hard drive for geometry data

Heads

- Number of read/write heads used by the drive to store data
- Two heads per platter (top and bottom)
- Most hard drives have an extra head or two for their own usage, so the number may not be even

Figure 3: Two heads per platter

Cylinders

 Data stored in concentric circles on the platters, called tracks

Cylinders

 Group of tracks of the same diameter going completely through the drive

Figure 4: Cylinder

Sectors per Track

- Number of slices in the hard drive
- 512 bytes of storage per sector

Figure 5: Sectors per track

Data is stored on the platters in sectors

Obsolete Geometry

Might see in older systems

Write precompensation cylinder

- The specific cylinder from where the drive would start writing data farther apart
 - Internal sectors physically smaller
 - External sectors physically larger
 - This identified cylinder where spacing changed

Landing zone

- Unused cylinder as "parking place" for heads
 - Referred to as Lzone, LZ, Park
 - Needed for older drives using stepper motors

Spindle or (rotational) speed

- Measured in revolutions per minute (RPM)
 - The faster the drive, the better the performance
- Common speeds:
 - 5400, 7200, 10,000, and 15,000 RPM
- Faster rotational speed produces more heat
 - Airflow is a key factor in reducing heat
 - Reduce heat with case fans or bay fans

Mike Meyers' CompTIA A+®
Guide to
Managing and
Troubleshooting PCs
Fourth Edition

Spindle or (rotational) speed (continued)

Figure 6: Bay fan

Solid-state Drives

- A solid-state drive (SSD) uses no moving parts
 - Fast
 - Expensive compared to HDDs
- DRAM- and flash-based drives (latter are more common)
- Solid-state technology in hard drives, memory cards, and more

Figure 7: A solid-state drive (photo courtesy of Corsair)

Flash-based SSDs

Pure flash drives for portables

Advantages:

- Very low-power usage and heat generation
- Very fast in reads because no moving parts
- Extremely rugged—nothing to break

Disadvantages

- Price (as of early 2010)
 - HDDs: \$0.10 per GB capacity
 - SSDs: \$3.50 per GB capacity
- Capacity much lower than HDDs, but climbing

Parallel and Serial ATA

ATA interfaces dominate today's market

- Many changes throughout years
- Parallel ATA (PATA) historically prominent
- Serial ATA (SATA) since 2003
- Called integrated drive electronics (IDE)

ATA Overview

	Cable	Keywords	Speed	Max size
ATA-1	40-pin	PIO and DMA	3.3 MBps to 8.3 MBps	504 MB
ATA-2	40-pin	EIDE ATAPI	11.1 MBps to 16.6 MBps	8.4 GB
ATA-3	40-pin	S.M.A.R.T.	11.1 MBps to 16.6 MBps	8.4 GB
ATA-4	40-pin	Ultra	16.7 MBps to 33.3 MBps	8.4 GB
INT13		BIOS Upgrade		137 GB
ATA-5	40-pin 80-wire	ATA/33 ATA/66	44.4 MBps to 6.6 MBps	137 GB
ATA-6	40-pin 80-wire	Big Drive	100 MBps	144 PB
ATA-7	40-pin 80-wire 7-pin	ATA/133 SATA	133 MBps to 300 MBps	144 PB

- 40-pin ribbon cable
- Allowed two drives (one master, one slave)
- Programmable I/O (PIO)—traditional data transfer
 - 3.3 MBps to 8.3 MBps
- DMA—direct memory access
 - 2.1 MBps to 8.3 MBps
- Maximum capacity = 504 MB

Mike Meyers' CompTIA A+®
Guide to
Managing and
Troubleshooting PCs
Fourth Edition

Early ATA Physical Connections

Figure 8: Back of IDE drive showing 40-pin connector (left), jumpers (center), and power connector (right)

Figure 9: Relation of drive, controller, and bus

Mike Meyers' CompTIA A+®
Guide to
Managing and
Troubleshooting PCs
Fourth Edition

Early ATA Physical Connections (continued)

Figure 10: A typical hard drive with directions (top) for setting a jumper (bottom)

Figure 11: IDE interfaces on a motherboard

- Commonly called EIDE (Western Digital marketing term)
- Increased maximum size to 8.2 GB through LBA and sector translation
- Added ATAPI
 - Could now use CD drives
- Added second controller
- Added new PIO and DMA modes to increase data transfers to 16.6 MBps

ATA-2 (continued)

Figure 12: EIDE drive

Higher Capacity with LBA

Figure 13: Too many heads

Figure 14: Multiple sectors/track

ATAPI

Figure 15: ATAPI CD-RW drive attached to a motherboard via a standard 40-pin ribbon cable

Figure 16: Primary and secondary controllers labeled on a motherboard

- Self-Monitoring Analysis and Reporting Technology
 - S.M.A.R.T.
- No real change in other stats

S.M.A.R.T. Information

Fourth Edition

Figure 17: Data Lifeguard Tools

Figure 18: S.M.A.R.T. information

Introduced Ultra DMA Modes

- Ultra DMA Mode 0: 16.7 MBps
- Ultra DMA Mode 1: 25 MBps
- Ultra DMA Mode 2: 33 MBps
- These are forms of DMA bus mastering
- Ultra DMA Mode 2 also called ATA/33

INT13 Extensions

- ATA-1 standard actually written for hard drives up to 137 GB
 - BIOS limited it to 504 MB due to cylinder, head, and sector maximums
 - ATA-2 implemented LBA to fool the BIOS, enabling drives up to 8.4 GB
- INT13 Extensions extended BIOS commands
 - Enabled drives up to 137 GB

Introduced newer Ultra DMA Modes

- Ultra DMA Mode 3: 44.4 MBps
- Ultra DMA Mode 4: 66.6 MBps

Ultra DMA Mode 4 also called ATA/66

Used 40-pin cable, but had 80 wires

- Blue connector—to controller
- Gray connector—slave drive
- Black connector—master drive

Figure 19: ATA/66 cable

- "Big Drives" introduced (name soon changed to ATA/ATAPI-6)
- Replaced INT13 & 24-bit LBA to 48-bit LBA
- Increased maximum size to 144 PB
 - 144,000,000 GB
- Introduced Ultra DMA 5
 - Ultra DMA Mode 5: 100 MBps (ATA/100)
 - Used same 40-pin, 80-wire cables as ATA-5

Introduced Ultra DMA 6

- Ultra DMA Mode 6: 133 MBps (ATA/133)
- Used same 40-pin, 80-wire cables as ATA-5
- Didn't really take off due to SATA's popularity

Introduced Serial ATA (SATA)

Increased throughput to 150 MBps to 300 MBps

End of PATA

Ultra DMA Mode 6

- Up to 133 Mbps
- ATA/133
- 80-wire cable

Problems with PATA

- Wide, flat cables impede airflow
- Cable limited to 18"
- No hot-swapping
- Reached limits of technology

Serial ATA

- Serial ATA (SATA) creates a point-to-point connection between the device and the controller or host bus adapter (HBA)
 - Narrower cables result in better airflow and cable control in the PC
 - Maximum cable length of 1 meter
 - Hot-swappable
 - No drive limit
 - Throughput of 150 MBps to 600 MBps

Figure 20: SATA hard disk power (left) and data (right) cables

SATA Bridge

Figure 21: SATA bridge

AHCI

Windows Vista/7 support Advanced Host Controller Interface (AHCI)

- Efficient way to work with SATA HBAs
- Makes hot-swapping work well (otherwise have to run the Add New Hardware Wizard)
- Native command queuing (NCQ) is a diskoptimization feature that enables faster read/write speeds
- Implement AHCI in CMOS before installing the OS

SATA Naming

- SATA drives come in two flavors
 - SATA 1.5Gb
 - SATA 3Gb
- Marketing hype has branded SATA 3Gb drives as SATA II
- SATA committee is called the SATA-IO
- Note the numbers don't quite add up
 - 1.5 Gb = 192 MBps, not 150 MBps
 - Up to 20 percent lost to overhead and encoding scheme, thus the lower actual speed

External Serial ATA

eSATA

- External SATA
- Extends SATA bus to external devices
- Cable length up to 2 meters
- eSATA extends the SATA bus at full speed, which tops out at a theoretical 6 Gbps, whereas the fastest USB connection (USB 3.0, also called SuperSpeed USB) maxes out at 5 Gbps.

External Serial ATA (continued)

Figure 22: eSATA connectors

Figure 23: eSATA ExpressCard

SCSI Small Computer System Interface

SCSI

- Pronounced "Scuzzy"
- Been around since 1970s
- Devices can be internal or external
- Historically the choice for RAID
 - Faster than PATA
 - Could have more than four drives
- SATA replacing SCSI in many applications

SCSI Chains

- A SCSI chain is a series of SCSI devices working together through a host adapter.
- The host adapter is a device that attaches the SCSI chain to the PC.

 All SCSI devices are divided into internal and external groups.

SCSI Chains (continued)

Figure 24: SCSI host adapter

SCSI Chains (continued)

Figure 25: Internal SCSI CD-ROM

Figure 26: Back of external SCSI device

Internal Devices

- Internal SCSI devices are installed inside the PC and connect to the host adapter through the internal connector.
- Internal devices use a 68-pin ribbon cable.
- Cables can be connected to multiple devices.

Internal Devices (continued)

Figure 27: Typical 68-pin ribbon cable

Figure 28: 50-pin HD port on SCSI host adapter

External Devices

- External SCSI devices are connected to external connection of host adapter.
- External devices may have two connections in the back to allow for daisy-chaining.
- A standard SCSI chain can connect 15 devices, plus the host adapter.

External Devices (continued)

Figure 29: Internal SCSI chain with two devices

Figure 30: Internal and external devices on one SCSI chain

SCSI IDs

- Each SCSI device must have a unique SCSI ID.
- The values of ID numbers range from 0 to 15.

Figure 31: IDs don't conflict between separate SCSI chains.

- No two devices connected to a single host adapter can share the same ID number.
- No order for the use of SCSI IDs, and any SCSI device can have any SCSI ID.

SCSI IDs (continued)

- The SCSI ID for a particular device can be set by configuring jumpers, switches, or even dials.
- Use your binary knowledge to set the device ID:

```
Device 1 = 0 0 0 1 Off, Off, Off, On
Device 7 = 0 1 1 1 Off, On, On, On
Device 15 = 1 1 1 1 On, On, On, On
```

 Host adapters often set to 7 or 15 but can be changed.

Termination

- Terminators are used to prevent a signal reflection that can corrupt the signal.
- Pull-down resistors are usually used as terminators.
- Only the ends of the SCSI chains should be terminated.
- Most manufacturers build SCSI devices that self-terminate.

Figure 32: Location of the terminated devices

Termination (continued)

Figure 32: Location of the terminated devices

Figure 33: Setting termination

Protecting Data with RAID

Protecting Data

- The most important part of a PC is the data it holds.
 - Companies have gone out of business because of losing data on hard drives.
- Hard drives will eventually develop faults.
- Fault tolerance enables systems to operate even when a component fails.
 - Redundant array of inexpensive disks (RAID) is one such technology.

Mike Meyers' CompTIA A+®
Guide to
Managing and
Troubleshooting PCs

Protecting Data (continued)

Fourth Edition

Figure 34:Mirrored drives

Figure 35: Duplexing drives

Figure 36: Disk striping

RAID Level 0

Disk striping

- Writes data across multiple drives at once
- Requires at least two hard drives
- Provides increased read and writes

Not fault tolerant

If any drive fails, the data is lost

RAID Level 1

- Disk mirroring/duplexing is the process of writing the same data to two drives at the same time
 - Requires two drives
 - Produces an exact mirror of the primary drive
 - Mirroring uses the same controller
 - Duplexing uses separate controllers

RAID Levels 2 to 4

RAID 2

- Disk striping with multiple parity drives
- Not used

RAID 3 and 4

- Disk striping with dedicated parity
- Dedicated data drives and dedicated parity drives
- Quickly replaced by RAID 5

RAID Level 5

Disk striping with distributed parity

- Distributes data and parity evenly across the drives
- Requires at least three drives
- Most common RAID implementation

RAID Level 6

Super disk striping with distributed parity

- RAID 5 with asynchronous and cached data capability
- Requires at least five drives, but can lose up to two drives and still recover

RAID Oddities and JBOD

- Consumer-oriented boards offer "special" features
- RAID 0+1
 - Two striped sets mirrored
- RAID 1+0 (RAID "10")
 - Two mirrored sets striped
 - Both require four drives
- Just a Bunch of Disks (JBOD)

Implementing RAID

SCSI has been the primary choice in the past

- Faster than PATA
- Hot-swappable
- PATA supported only four drives

SATA today viewed as comparable choice

- Speeds comparable to SCSI
- Less expensive than SCSI
- Hot-swappable
- Dedicated SATA controllers can support up to 15 drives

Hardware vs. Software

Hardware RAID

- Dedicated controller
- Operating system views it as single volume

Software RAID

- Operating system recognizes all individual disks
- Combines them together as single volume

Hardware vs. Software (continued)

Figure 37: Disk Management tool of Computer Management in Windows 2003 Server 2008 R2

Hardware vs. Software (continued)

Figure 38: Serial ATA RAID controller

Figure 39: RAID configuration utility

Personal RAID

- ATA RAID controller chips have gone down in price.
- Many motherboards are now shipping with RAID built-in.

- The future is RAID.
 - RAID has been around for 20 years, but is now less expensive and moving into desktop systems.

Installing Drives

Connecting Your Drive

Choosing your drive

- PATA, SATA, or SCSI
- Check BIOS and motherboard for support

Jumpers and cabling on PATA

- Master
- Slave
- Cable select

Connecting Your Drive (continued)

Figure 40: Settings for RAID in CMOS

Figure 41: Master/slave jumpers on a hard drive

Connecting Your Drive (continued)

Figure 42: Drive label showing master/slave settings

Connecting ATA Drives

PATA

- Ribbon cable pin 1 to pin 1
- Molex for power

SATA

- Cable keyed, so goes in one way
- SATA for power, though some can use Molex

SATA best practice

 Install drive you want as primary/bootable into first SATA controller, usually SATA 0

Connecting ATA Drives *(continued)*

Figure 43: Properly connected SATA cable

Connecting SSDs

- Most likely to find in portable PCs
- Connect the same way HDDs connect
 - PATA
 - SATA
- Drivers needed for pre-Vista Windows

Connecting SCSI Drives

- First need compatible controller
 - Different types of SCSI
- Connect data cable
 - Reversing this cable can damage drive, data, or both
 - Pin 1 to pin 1, just like PATA
- Connect power—Molex connector
- Configure SCSI IDs on drives and controller

BIOS Support: Configuring CMOS and Installing Drivers

Configuring Controllers and Autodetection

- Enable controller
- Auto detection runs
- Enable AHCI

Figure 45: Old standard CMOS settings

Figure 44: Typical controller settings in CMOS

Configuring Controllers and Autodetection (continued)

```
BIOS SETUP UTILITY
                                                            Exit
        Ai Tweaker
                     Advanced
                                  Power
                                           Boot
                                                   Tools
                                                      Use [ENTER], [TAB]
                               [ :17:21]
                                                      or [SHIFT-TAB] to
System Date
                               [Fri 02/17/2012]
                                                      select a field.
Legacy Diskette A
                               [1.44M, 3.5 in.]
                               [English]
                                                      Use [+] or [-] to
Language
                                                      configure system Time.
SATA 1
                             : [WDC WD1001FALS-00J]
SATA 2
                             : [WDC WD1001FALS-00J]
▶ SATA 3
                             : [Not Detected]
SATA 4
                             : [Not Detected]
SATA 5
                             : [Not Detected]
SATA 6
                             : [HP DVD Writer 1260]
                                                            Select Screen
Storage Configuration
                                                      11
                                                            Select Item
▶ System Information
                                                            Change Field
                                                            Select Field
                                                      F1
                                                            General Help
                                                      F10
                                                            Save and Exit
                                                      ESC
                                                            Exit
          υ02.61 (C)Copyright 1985-2011, American Megatrends, Inc.
```

Figure 46: New standard CMOS features

Boot Order

- Identifies where computer will try to load an operating system
 - Multiple devices configured
 - First one with an OS will boot

Figure 47: Boot order

Troubleshooting Hard Drive Installation

Autodetect fails

- Power
- Ribbon cable installed improperly
- Jumpers set incorrectly
- Simplify and try again, one drive at a time
- Physical settings correct? Try CMOS errors
 - Controller disabled
 - ATA level supported? (i.e., is the drive too large for your BIOS to see properly?)
 - Check the manufacturer's Web site for known issues

Beyond A+

Hybrid Hard Drives (HHD)

- Combine flash memory and traditional platters
- Up to 256-MB flash for fast cache for data and boot
 - Essential OS boot files on flash
- Platters do not spin by default
 - Lower power usage
- Read/write to flash unless need data from HDD or buffer exceeded
- Could shave boot times in half and add battery life
- Only Windows Vista and Windows 7