#### TCET 2102 – Lesson 5

#### The Medium

Some material (c)2004 by John Wiley & Sons, Inc. Publications

1

### Outline

Local Loop The Central Office The Medium – wires Color Code Resistance AWG Telephone Voice **Reactance and Loading** 

### Local Loop

'The Last Mile' Subscriber line carrier systems SLC-96  $AC \rightarrow DC$ 



## Color Codes

Plastic Insulated Cable (PIC)

Colors: black, brown, red, orange, yellow, green, blue, violet, slate, white. (Sound familiar?)

Some places still have paper.

Site 1

Site 2

#### Current requirements

```
27 mA to trip the 'Ring trip relay.'
How can we get that?
  Ring/tip = 500 \Omega each
 Telephone = 400 \Omega
  Relay = 350 \Omega
  Supply voltage = 48 V
Total current = 27.428 mA
Necessary for the Strowger switch.
```

#### Transmitter Current

Improvements

- Better mic Less resistance
- Higher voltage 52 V, necessary to run electronic switching
- Ring trip relay current reduction 20 mA

Consequences:

Total line resistance may be increased.

Practical consequences:

May service customers further away from central office.

### Outside plant design

Revised resistance design (RRD) up to 18,000 ft.  $\rightarrow$  1300  $\Omega$ up to 24,000 ft  $\rightarrow$  1500  $\Omega$ Modified long route design (MLRD) over 24,000 ft pump up the power  $\rightarrow$  78/104 V

#### Central office and serving areas

Main distribution frame (MDF)

Central terminating point for twisted pair Jumper wire for connecting line to phone.

Wire is expensive

Cheaper to have many exchanges with smaller wire, than fewer exchanges and thicker wire.

# Wire gauge

#### Metric

| A.W.G.  | DIAME-<br>TER | AREA    | WEIGHT        |                | LENGTH        |               | RESISTANCE      |                |
|---------|---------------|---------|---------------|----------------|---------------|---------------|-----------------|----------------|
| B. & S. | Mm.           | Sq. Mm. | Kg.<br>per M. | Kg.<br>per Ohm | M.<br>per Kg. | M.<br>per Ohm | Ohms<br>per Kg. | Ohms<br>per M. |
| 0000    | 11.7          | 107.2   | .053          | 5040           | 1.05          | 6,230         | .000168         | .000161        |
| 000     | 10.4          | 85.0    | .756          | 3730           | 1.32          | 4,940         | .000268         | ,000202        |
| 00      | 0.27          | 67.4    | -599          | 2350           | 1.67          | 3,920         | .000426         | .000255        |
| 0       | 8.25          | 53.5    | -475          | 1480           | 2.10          | 3,110         | .000677         | .000322        |
| I       | 7.35          | 42.4    | .377          | 929            | 2.65          | 2,460         | .00108          | .000406        |
| 2       | 6.54          | 33.6    | .200          | 584            | 3.35          | 1,950         | -00171          | .000512        |
| 3       | 5.83          | 26.7    | .237          | 367            | 4.22          | 1,550         | .00272          | .000645        |
| 4       | 5.19          | 21.2    | .188          | 231            | 5-32          | 1,230         | .00433          | .000814        |
| 5       | 4.62          | 16.8    | .149          | 145            | 6.71          | 975           | .00688          | .00103         |
| 6       | 4.11          | 13.3    | .118          | 91.4           | 8.46          | 773           | .0100           | .00129         |
| 7       | 3.67          | 10.6    | .0938         | 57-5           | 10.7          | 613           | -0174           | .00163         |
| 8       | 3.26          | 8.37    | .0744         | 36.2           | 13.5          | 486           | .0277           | .00206         |
| 9       | 2.01          | 6.63    | .0590         | 22.7           | 17.0          | 386           | .0440           | .00259         |
| 10      | 2.59          | 5.26    | .0468         | 14.3           | 21.4          | 306           | .0699           | .00327         |
| 11      | 2.31          | 4.17    | .0371         | 8.99           | 27.0          | 242           | .III            | .00413         |
| 12      | 2.05          | 3.31    | .0294         | 5.66           | 34.0          | 192           | -177            | .00520         |
| 13      | 1.83          | 2.62    | .0234         | 3.56           | 42.9          | 153           | -281            | .00656         |
| 14      | 1.63          | 2.08    | .0185         | 2.24           | 54.1          | 121           | -447            | .00827         |
| 15      | 1.45          | 1.65    | .0147         | 1.41           | 68.2          | 95.9          | .711            | .0104          |
| 16      | 1.29          | 1.31    | .0116         | .885           | 86.0          | 76.0          | 1.13            | .0132          |
| 17      | 1.15          | 1.04    | .00922        | .556           | 108           | 603           | 1.80            | .0166          |
| 18      | 1.02          | .823    | .00732        | .350           | 136           | 47.8          | 2.86            | .0200          |
| 19      | .912          | .653    | .00580        | .220           | 172           | 37.9          | 4.54            | .0264          |
| 20      | .812          | .518    | .00460        | .138           | 217           | 30.I          | 7.23            | .0333          |
| 21      | .723          | .410    | .00365        | .0871          | 274           | 23.9          | 11.5            | .0419          |
| 22      | .644          | .326    | .00289        | .0548          | 346           | 18.9          | 18.3            | .0529          |
| 23      | -573          | .258    | .00229        | .0344          | 436           | 150           | 29.1            | .0667          |
| 24      | .511          | .205    | .00182        | .0217          | 550           | 11.9          | 46.2            | .0841          |
| 25      | .455          | .162    | .00144        | .0136          | 693           | 9.43          | 73.4            | .106           |
| 26      | -405          | .129    | .00114        | .00856         | 874           | 7.48          | 117             | .134           |
| 27      | .361          | .102    | 800000.       | .00538         | 1,100         | 5.93          | 186             | .169           |
| 28      | .321          | .081    | .000720       | .00339         | 1,390         | 4.70          | 295             | .213           |
| 29      | .286          | .0642   | .000571       | .00213         | 1,750         | 3.73          | 470             | .268           |
| 30      | .255          | .0510   | .000453       | .00134         | 2,210         | 2.96          | 747             | .338           |
| 31      | .227          | .0404   | .000359       | .000842        | 2,790         | 2.35          | 1,190           | .426           |
| 32      | .202          | .0320   | .000285       | .000530        | 3,510         | 1.86          | 1,890           | .537           |
| 33      | .180          | .0254   | .000226       | .000333        | 4,430         | 1.48          | 3,000           | .678           |
| 34      | .160          | .0201   | .000179       | .000210        | 5,590         | 1.17          | 4,770           | .855           |
| 35      | .143          | .0160   | .000142       | .000132        | 7,040         | .928          | 7,590           | 1.08           |
| 36      | .127          | .0127   | .000113       | .0000829       | 8,880         | .736          | 12,100          | 1.36           |
| 37      | .113          | .0101   | .0000893      | .0000521       | 11,200        | .584          | 19,200          | 1.71           |
| 38      | .101          | .00797  | .0000708      | .0000327       | 14,100        | .463          | 30,000          | 2.16           |
| 39      | .0897         | .00632  | .0000562      | .0000206       | 17,800        | .367          | 48,500          | 2 73           |
| 40      | .0700         | .00501  | .0000445      | .0000130       | 22,500        | .201          | 77,100          | 3 44           |

#### **English Units**

|             | A                   | merican W        | ire Gage         | (B. & S.).          | English                | Units                                   |                            |
|-------------|---------------------|------------------|------------------|---------------------|------------------------|-----------------------------------------|----------------------------|
| Gage<br>No. | Diameter<br>in mils | Cross-           | ection           | Ohms pe             | er 1000 ft.            | Ohms per<br>mile<br>25° C.<br>(-77° F.) | Pounds<br>per 1,000<br>ft. |
|             |                     | Circular<br>mils | Square<br>inches | 25° C.<br>(=77° F.) | 65° C.<br>( = 149° F.) |                                         |                            |
| 0000        | 460.0               | 212,000 .0       | 0.166            | 0.0500              | 0.0577                 | 0.264                                   | 641.0                      |
| 000         | 410.0               | 168,000 .0       | 0.132            | 0.0630              | 0.0727                 | 0.333                                   | 508.0                      |
| 00          | 365.0               | 133,000 .0       | 0.105            | 0.0795              | 0.0917                 | 0.420                                   | 403.0                      |
| 0           | 325 .0              | 106,000 .0       | 0.0829           | 0.100               | 0.116                  | 0.528                                   | 319.0                      |
| 1           | 289 .0              | 83,700 .0        | 0.0657           | 0.126               | 0.146                  | 0.665                                   | 253.0                      |
| 2           | 258 .0              | 66,400 .0        | 0.0521           | 0.159               | 0.184                  | 0.839                                   | 201.0                      |
| 345         | 229.0               | 52,600.0         | 0.0413           | 0.201 +             | 0.232                  | 1.061                                   | 159.0                      |
|             | 204.0               | 41,700.0         | 0.0328           | 0.253 -             | 0.292                  | 1.335                                   | 126.0                      |
|             | 182.0               | 33,100.0         | 0.0260           | 0.319               | 0.369                  | 1.685                                   | 100.0                      |
| 6           | 162.0               | 26,300.0         | 0.0206           | 0.403               | 0.465                  | 2.13                                    | 79.5                       |
| 7           | 144.0               | 20,800.0         | 0.0164           | 0.508               | 0.586                  | 2.68                                    | 63.0                       |
| 8           | 128.0               | 16,500.0         | 0.0130           | 0.641               | 0.739                  | 3.38                                    | 50.0                       |
| 9           | 114.0               | 13,100.0         | 0.0103           | 0.808               | 0.932                  | 4.27                                    | 39.6                       |
| 10          | 102.0               | 10,400.0         | 0.00815          | 1.02                | 1.18                   | 5.38                                    | 31.4                       |
| 11          | 91.0                | 8,230.0          | 0.00647          | 1.28                | 1.48                   | 6.75                                    | 24.9                       |
| 12          | · 81.0              | 6,530.0          | 0.00513          | 1.62                | 1.87                   | 8.55                                    | 19.8                       |
| 13          | 72.0                | 5,180.0          | 0.00407          | 2.04                | 2.36                   | 10.77                                   | 15.7                       |
| 14          | 64.0                | 4,110.0          | 0.00323          | 2.58                | 2.97                   | 13.62                                   | 12.4                       |
| 15          | 57.0                | 3,260.0          | 0.00256          | 3.25                | 3.75                   | 17.16                                   | 9.86                       |
| 16          | 51.0                | 2,580.0          | 0.00203          | 4.09                | 4.73                   | 21.6                                    | 7.82                       |
| 17          | 45.0                | 2,050.0          | 0.00161          | 5.16                | 5.96                   | 27.2                                    | 6.20                       |
| 18          | 40.0                | 1,620.0          | 0.00128          | 6.51                | 7.51                   | 34.4                                    | 4.92                       |
| 19          | 36.0                | 1,290.0          | 0.00101          | 8.21                | 9.48                   | 43.3                                    | 3.90                       |
| 20          | 32.0                | 1,020.0          | 0.000802         | 10.4                | 11.9                   | 54.9                                    | 3.09                       |
| 21          | 28.5                | 810.0            | 0.000636         | 13.1                | 15.1                   | 69.1]                                   | 2.45                       |
| 22          | 25.3                | 642.0            | 0.000505         | 16.5                | 19.0                   | 87.1                                    | 1.94                       |
| 23          | 22.6                | 509.0            | 0.000400         | 20.8                | 24.0                   | 109.8                                   | 1.54                       |
| 24          | 20.1                | 404 .0           | 0.000317         | 26.2                | 30.2                   | 138.3                                   | 1.22                       |
| 25          | 17.9                | 320 .0           | 0.000252         | 33.0                | 38.1                   | 174.1                                   | 0.970                      |
| 26          | 15.9                | 254 .0           | 0.000200         | 41.6                | 48.0                   | 220.0                                   | 0.769                      |
| 27          | 14.2                | 202.0            | 0.000158         | 52.5                | 60.6                   | 277.0                                   | 0.610                      |
| 28          | 12.6                | 160.0            | 0.000126         | 66.2                | 76.4                   | 350.0                                   | 0.484                      |
| 29          | 11.3                | 127.0            | 0.0000995        | 83.4                | 96.3                   | 440.0                                   | 0.384                      |
| 30          | 10.0                | 101.0            | 0.0000789        | 105.0               | 121.0                  | 554.0                                   | 0.304                      |
| 31          | 8.9                 | 79.7             | 0.0000626        | 133.0               | 153.0                  | 702.0                                   | 0.241                      |
| 32          | 8.0                 | 63.2             | 0.0000496        | 167.0               | 193.0                  | 882.0                                   | 0.191                      |
| 33          | 7.1                 | 50.1             | 0.0000394        | 211.0               | 243.0                  | 1,114.0                                 | 0.152                      |
| 34          | 6.3                 | 39.8             | 0.0000312        | 266.0               | 307.0                  | 1,404.0                                 | 0.120                      |
| 35          | 5.6                 | 31.5             | 0.0000248        | 335.0               | 387.0                  | 1,769.0                                 | 0.0954                     |
| 36          | 5.0                 | 25.0             | 0.0000196        | 423.0               | 488.0                  | 2,230.0                                 | 0.0757                     |
| 37          | 4.5                 | 19.8             | 0.0000156        | 533.0               | 616.0                  | 2,810.0                                 | 0.0600                     |
| 38          | 4.0                 | 15.7             | 0.0000123        | 673.0               | 776.0                  | 3,550.0                                 | 0.0476                     |
| 39<br>40    | 3.5                 | 12.5<br>9.9      | 0.0000098        | 848.0<br>1,070.0    | 979.0<br>1,230.0       | 4,480.0 5,650.0                         | 0.0377                     |

#### Wires

Affects carrier service area (CSA) What about the AC signal? Reactance considerations ~ 0.083 μF/mile

# What's the trick to counter reactance? Loading!

The addition of loading coils help counter the capacitive effect.