MAT. 1180 - Mathematical Concepts and Applications
 Chapter 5 (Aug, 27)

- Number Theory: Prime and Composite Numbers.
- The set of Natural numbers, aka, Counting numbers, denoted by \mathbb{N}, is

$$
\mathbb{N}=\{1,2,3,4,5,6, \ldots\}
$$

- If a and b are natural numbers, a is divisible by b if operation of dividing a by b leaves a remainder of 0 . This is the same of saying that b is a divisor of a, or b divides a. All three statements are symbolized by writing

$$
b \mid a
$$

- Divisibility
* 2 - The last digit is $0,2,4,6$, or 8 .
* 3 - The sum of all digits is divisible by 3 .
* 4 - The last 2 digits form a number divisible by 4 .
* 5 - The last digit is 0 , or 5 .
* 6 - The number is divisible by both 2 and 3 .
* 8 - The last 3 digits form a number divisible by 8 .
* 9 - The sum of all digits is divisible by 9 .
* 10 - The last digit is 0 .
* 12 - The number is divisible by both 3 and 4 .
- A Prime Number is a natural number greater than 1 that has only itself and 1 as factors.
* 1 is NOT prime.
* The smallest prime is 2 .
- A Composite Number is a natural number greater than 1 that is divisible by a number other than itself and 1.
* The smallest composite number is 4 .
* Any natural even number bigger than 2 is composite.
- The natural numbers can be partitioned into three groups: 1, primes, and composites.
- The Fundamental Theorem of Arithmetic
* Every composite number can be uniquely expressed as a product of prime numbers.
$-[\mathbf{e x}]$ Find the prime factorization of the following numbers

$$
30,64,700
$$

- [ex] Find the Greatest Common Divisor (GCD) of the following groups of numbers.

1. 216 and 234
2. 225 and 825

- [ex] Find the Least Common Multiple (LCM) of the following groups of numbers.

1. 144 and 300
2. 18 and 30

- [ex] A movie theater runs two documentary films continuously. One runs for 40 minutes and a second runs for 60 minutes. Both movies begin at $3: 00 \mathrm{PM}$. When will the movies begin again at the same time?
- The Integers; Order of Operation
- The Whole Numbers is the set consisting of 0 and the natural numbers, i.e.,

$$
\text { Whole Numbers }=\{0,1,2,3,4, \ldots\}
$$

- The Integers, \mathbb{Z}, is the set consisting of whole numbers and the negative of natural numbers,

$$
\mathbb{Z}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

In particular,

* The negative of natural numbers is called Negative Integers, and denoted by \mathbb{Z}^{-}.
* The natural numbers is also called Positive Integers. We can use notation \mathbb{Z}^{+}, but mostly people just use \mathbb{N}.
- [ex] Write the following numbers on the number line

$$
5,-3,0,-7,6
$$

$-[\mathbf{e x}]$ Use " $<$ " or " $>$ " to connect the following groups of numbers.

1. 8 and -7
2. 4 and -6
3. -3 and -9
4. 0 and -2

- The Absolute Value of an integer a, denoted by $|a|$, is the distance from 0 to a on the number line.
* Because absolute value describe a distance, it is never negative.
* [ex] Evaluate the followings:

$$
|8|,|-5|,|0|,-|-3|,-|4|
$$

- [ex] Evaluate.

1. $-2+(-8)$
2. $-3+5$
3. $-8-4$
4. $10+(-2)$
5. $12-(-8)$
6. $-6-(-4)$
7. $-3-7$
8. $3(-5)$
9. $(-4)(-3)$
10. $-8(0)$
11. $-2(-3)(-5)$
12. $-2(3)(-5)$
13. $(-3)^{2}$
14. $-(3)^{2}$
15. $(-2)^{3}$
16. $(-2)^{4}$
17. $-20 \div 4$
18. $12 \div(-3)$

- [ex] Evaluate.

1. $3+7 \cdot 2$
2. $8 \div 4 \cdot 2$
3. $8 \div(4 \cdot 2)$
4. $3^{2}-24 \div 2^{2} \cdot 3+1$
5. $(-4)^{2}-(10-13)^{2}(-2)$

- The Rational Numbers
- The set of Rational Numbers, denoted by \mathbb{Q}, is the set of all numbers which can be expressed in the form $\frac{a}{b}$, where a and b are integers and b is not 0 . The integer a is called the Numerator, and b is called the Denominator.
* If positive integers a and b shares no common factor other than $1, a$ and b are said to be Relatively Prime.
* If $\frac{a}{b}$ is a rational number and c is any number other than 0 , then

$$
\frac{a \cdot c}{b \cdot c}=\frac{a}{b}
$$

$* \frac{a}{b}$ is said to be in reduced form if a and b are integers sharing no common factor other than ± 1.

* [ex] Reduce/simplify the following numbers.

$$
\frac{12}{4}, \frac{20}{12}, \frac{-18}{30}
$$

* [ex] Convert the following Mixed Numbers to Improper Fractions.

$$
3 \frac{3}{7},-5 \frac{1}{3}
$$

* [ex] Convert the following improper fractions to mixed.

$$
\frac{15}{4},-\frac{23}{5}
$$

* [ex] Express each rational as a decimal.

$$
\frac{5}{8}, \frac{8}{11}
$$

* [ex] Express the following decimals as reduced fractions.

$$
0.7,0.2,0.26,0.048,0 . \overline{6}, 0 . \overline{36}
$$

* [$\mathbf{e x}$] Determine if 1 or $0 . \overline{9}$ is greater.
- For fractions $\frac{a}{b}$ and $\frac{c}{d}$, we have

$$
\begin{gathered}
\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}=\frac{a c}{b d} \\
\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c} \\
\frac{a}{b} \pm \frac{c}{d}=\frac{a d}{b d} \pm \frac{b c}{b d}=\frac{a d \pm b c}{b d}
\end{gathered}
$$

* [ex] Evaluate. The final answer must be simplified.

1. $\frac{3}{8} \cdot \frac{5}{11}$
2. $-\frac{6}{7} \cdot \frac{14}{3}$
3. $3 \frac{2}{3} \cdot 1 \frac{1}{4}$
4. $\frac{9}{11} \div \frac{5}{4}$
5. $-\frac{8}{15} \div \frac{2}{5}$
6. $3 \frac{3}{8} \div 2 \frac{1}{4}$
7. $\frac{3}{4}+\frac{1}{6}$
8. $\frac{1}{5}+\frac{3}{4}$
9. $\frac{3}{10}-\frac{7}{12}$
10. $\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}-\frac{3}{4}\right)^{2}(-4)$
11. $\left(-\frac{1}{2}\right)^{2}-\left(\frac{7}{10}-\frac{8}{15}\right)^{2}(-18)$

* [ex] Find the number halfway between $\frac{1}{3}$ and $\frac{1}{2}$.

- Irrational Numbers

- The set of Irrational Numbers is the set of numbers whose decimal representations are neither terminated nor repeating.
* The two most famous irrational numbers for now is π and e.
- The Principle Square Root of a nonnegative number n, written \sqrt{n}, is the positive number that when multiplied by itself gives n.
- Rules on Square Roots
* If $a>0$ and $b>0$, then

$$
\sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \text { and } \sqrt{a} \cdot \sqrt{b}=\sqrt{a b}
$$

* If $a>0$ and $b>0$, then

$$
\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}} \text { and } \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

* $a \sqrt{c}+b \sqrt{c}=(a+b) \sqrt{c}$
- Evaluate. The final answer must be simplified or rationalized when applicable.

1. $\sqrt{12}$
2. $\sqrt{60}$
3. $\frac{\sqrt{80}}{\sqrt{5}}$
4. $\sqrt{2}+\sqrt{8}$
5. $4 \sqrt{8}-7 \sqrt{18}$
6. $\sqrt{12}+\sqrt{18}$
7. $\frac{2}{\sqrt{3}}$
8. $\sqrt{\frac{2}{7}}$

- Real Numbers and Their Properties
- Number system. $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Q}^{c}, \mathbb{Z}, \mathbb{N}$ and whole numbers.
- [Optional] Properties of \mathbb{R}.
* Closed under Addition and Multiplication.
* Commutative under Addition and Multiplication.
* Associative under Addition and Multiplication.
* Distributive of Multiplication over Addition.
* Additive Identity: 0.
* Additive Inverse, aka, Opposite.
* Multiplicative Identity: 1.
* Multiplicative Inverse (except for 0), aka, Reciprocal.
- [Optional] [ex] Identify the properties of the operation.

1. $3 \cdot \sqrt{2}=\sqrt{2} \cdot 3$
2. $(2+3)+5=2+(3+5)$
3. $(4-\sqrt{3}) \cdot 5=20-5 \sqrt{3}$
4. $1.5+0=1.5$
5. $2 \cdot \frac{1}{2}=1$
6. $1 \cdot \sqrt{5}=\sqrt{5}$
7. $(-2)+2=0$

- [Optional] [ex] Give an example to show that

1. Irrationals are NOT closed under multiplication.
2. Naturals are NOT closed under division.

- Properties of Exponents
- Properties of Exponents
* $b^{m} \cdot b^{n}=b^{m+n}$
* $\left(b^{m}\right)^{n}=b^{m n}$
* $\frac{b^{m}}{b^{n}}=b^{m-n}$
* $b^{0}=1$ for $b \neq 0$
* 0^{0} is undefined.
* $b^{-m}=\frac{1}{b^{m}}$
- [ex] Simplify

1. 7^{0}
2. $4^{-2} \cdot 4^{4}$
3. $\frac{2^{6}}{2^{3}}$
4. $\frac{3^{12}}{3^{-5}}$
5. $\frac{4^{-5}}{4^{7}}$
6. $\frac{5^{-3}}{5^{-8}}$

- A positive number is written in Scientific Notation when it is expressed in the form $a \times 10^{n}$
where $1 \leq a<10$ and n is an integer.
- [ex] Write each number in decimal notation

1. 3.04×10^{5}
2. 2.156×10^{-6}

- [ex] Write each number in scientific notation

1. 637000000
2. 0.0000236

- [ex] Evaluate. Leave the final answer in scientific notation.

1. $\left(3.4 \times 10^{5}\right)\left(2.1 \times 10^{21}\right)$
2. $30120000 \times 0.0000057$
