Please submit this page with your answer and question sheets
Must circle the correct answer on the answer sheet.

| 1. A | B | C | D | 10. A | B | C | D | 19. A | B | C | D |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2. A | B | C | D | 11. A | B | C | D | 20. A | B | C | D |
| 3. A | B | C | D | 12. A | B | C | D | 21. A | B | C | D |
| 4. A | B | C | D | 13. A | B | C | D | 22. A | B | C | D |
| 5. A | B | C | D | 14. A | B | C | D | 23. A | B | C | D |
| 6. A | B | C | D | 15. A | B | C | D | 24. A | B | C | D |
| 7. A | B | C | D | 16. A | B | C | D | 25. A | B | C | D |
| 8. A | B | C | D | 17. A | B | C | D | $26 . A$ | B | C | D |
| 9. A | B | C | D | $18 . A$ | B | C | D | | | | |

1. Which of the following is AC voltage source?

2. Capacitor is measured in

3. What is $1,780.5 \mathrm{~kJ}$ in engineering notation?

A	$1.7805 \times 10^{6} \mathrm{~J}$
B	$1.7805 \times 10^{4} \mathrm{~J}$
C	$1780.5 \times 10^{3} \mathrm{~J}$
D	1.7805 MJ

4. Thevenin's Theorem can be applied only to:

A	Resistive circuits
B	Capacitive circuits
C	Inductive Circuits
D	All of the above

5. Based on 4 band resistor color chart, find the value and tolerance in which a resistor has the following color bands to satisfy the manufacturer's tolerance $1^{\text {st }}$ band $\quad 2^{\text {nd }}$ band $\quad 3^{\text {rd }}$ band $\quad 4^{\text {th }}$ band red brown yellow gold

A	$214 \mathrm{k} \mathrm{Ohm} \pm 5 \%$
B	$120 \mathrm{k} \mathrm{Ohm} \times 5 \%$
C	$210 \mathrm{k} \mathrm{Ohm} \pm 5 \%$
D	2100 Ohm $\times 5 \%$

4 band resistor color chart		
color	Band value	tolerance
Black	0	
Brown	1	1%
Red	2	2%
Orange	3	3%
Yellow	4	4%
Green	5	0.5%
Blue	6	0.25%
Gold		5%
Silver		10%

6. A student measures resistance with a Digital Mutimeter (Volt/Amp/Ohm Meter). He places this Mutimeter on an ohmmeter setting $\mathrm{x} 200 \mathrm{k} \Omega$. Then he takes a resistor with the following color bands:
$1^{\text {st }}$ band $\quad 2^{\text {nd }}$ band $3^{\text {rd }}$ band $4^{\text {th }}$ band brown black yellow gold

Which value is correct for his Ohmmeter reading to satisfy the manufacturer's tolerance? In your test procedure, show your work how you decide the correct answer (refer to $\mathbf{4}$ band resistor color chart above)

A	$200 \mathrm{k} \Omega$
B	$98.2 \mathrm{k} \Omega$
C	$92.5 \mathrm{k} \Omega$
D	$109 \mathrm{k} \Omega$

Student First Name:
Last name EMPLID
Session Number
7. Resistors of $R 1=10 \mathrm{k} \Omega, R 2=1 \mathrm{k} \Omega, R 3=1 \mathrm{k} \Omega, R 4=$ $10 \mathrm{k} \Omega$ are connected in combinational circuit to a 12 Volt supply Vs. Choose correct answer.

A	R1 is in series with R4
B	R1 is in parallel with R2
C	R1 is in series with R3
D	R1 is in parallel with R3

8. Find the voltage V_{1} for the network below

A	2 V
B	4 V
C	6 V
D	24 V

9. How much resistance is needed to limit the current from a $V s=110 \mathrm{~V}$ source to 20 mA ?

A	$5.5 \mathrm{k} \Omega$
B	550Ω
C	$55 \mathrm{k} \Omega$
D	$550 \mathrm{k} \Omega$

10. Determine cu	
A	1 A
B	2 A
C	4 A
D	6 A

11. $I s=3.5 \mathrm{~mA}$. You measured $I 2$ to be 1 mA . What is current $I 1$?

A	1.5 mA
B	2.0 m A
C	2.5 mA
D	6 A

12. For the network, $R 1=3.0 \mathrm{k} \Omega, R 2=3.0 \mathrm{k} \Omega, R 3=$ $6.0 \mathrm{k} \Omega, R 4=6.0 \mathrm{k} \Omega$. What is the total resistance R_{AB} between A and B ?

13. A voltage source $V s=6.0 \mathrm{~V}$, two resistors are equal $R 1=R 2, R 3=R 4$, and the voltage between A and B ($V 3$ across $R 3$ and $R 4$) is 2.2 V . What are the voltage $V 1$ and $V 2$?

A	$\mathrm{V} 1=3.8 \mathrm{~V}, \mathrm{~V} 2=3.8 \mathrm{~V}$
B	$\mathrm{V} 1=1.1 \mathrm{~V}, \mathrm{~V} 2=1.1 \mathrm{~V}$
C	$\mathrm{V} 1=1.9 \mathrm{~V}, \mathrm{~V} 2=3.8 \mathrm{~V}$
D	$\mathrm{V} 1=1.9 \mathrm{~V}, \mathrm{~V} 2=1.9 \mathrm{~V}$

14. Assume a resistor R is rated for 2 W (2 Watts). What is the maximum voltage can be applied to the resister R to without exceeding its power rating.

A	110 V
B	220 V
C	100 V
D	40 V

15. Three equal resistors of 1000 ohms each $(R 1=R 2=$ $R 3$) are connected in series to a $V s=60 \mathrm{~V}$ power supply. If one of the resistors is shorted, the total resistance and current is:

16. For the network below, what is the voltage source E that has to be applied to this circuit?

A	30 V
B	21 V
C	21 mV
D	30 mV

17. For the network below, $\mathrm{R} 1=9 \mathrm{M} \Omega$, the total resistance ($\mathrm{RT}=\mathrm{R} 1 / / \mathrm{R} 2$) is $6 \mathrm{M} \Omega$, and the power dissipated by R 2 is 81 kW . What is the resistance of R_{2} ?

18. $L 1=4.0 \mathrm{mH}, L 2=2.0 \mathrm{mH}, L 3=1.0 \mathrm{mH}$. What is the total inductance between A and B ?

A	7.0 mH
B	1.7 mH
C	3.0 mH
D	4.7 mH

19. Three capacitors, namely $\mathrm{C}_{1}=3 \mu \mathrm{~F}, \mathrm{C}_{2}=2 \mu \mathrm{~F}$, and $\mathrm{C}_{3}=$ $20 \mu \mathrm{~F}$, are connected to $\mathrm{E}=50$-volt supply. What is the voltage across $20 \mu \mathrm{~F}$ capacitor C_{3} ?

Show your work here.

Student First Name:
Last name EMPLID
Session Number
20. For the sinusoidal signal, the time period of the waveform is 4 ms as shown in Figure, what is the frequency of the waveform?

A	0.25 kHz
B	1 kHz
C	4 kHz
D	10 kHz

21. Given the AC current source in a circuit $\mathrm{i}(\mathrm{t})=100 \sin (120 \pi \mathrm{t})(\mathrm{mA})$, where t is a time in the unit of $m s$. What is the amplitude of the AC current?

A	200 mA
B	100 mA
C	70.7 mA
D	141.4 mA

22. $R 1=R 2=2.0 \mathrm{k} \Omega, R 3=1.5 \mathrm{k} \Omega, R 4=2.5 \mathrm{k} \Omega$, and $V s=10.0 \mathrm{~V}$. What is the voltage $\boldsymbol{V A C}$?

A	2.0 V
B	5.0 V
C	10 V
D	2.5 V

Show your work here. You can use a calculator.
23. $R 1=R 2=2.0 \mathrm{k} \Omega, R 3=1.5 \mathrm{k} \Omega, R 4=2.5 \mathrm{k} \Omega$, and $V s=10.0 \mathrm{~V}$. What is the current through $R 1$?

Show your work here. You can use a calculator.
24. $R 1=R 2=2.2 \mathrm{k} \Omega, R 3=1.4 \mathrm{k} \Omega, R 4=3.5 \mathrm{k} \Omega$, and $V s=6.0 \mathrm{~V}$. How much power is dissipated by resistor $R 4$?

A	1.4 mW
B	3.5 mW
C	1.1 mW
D	2.2 mW

Show your work here. You can use a calculator.

Student First Name:
Last name EMPLID
Session Number
25. What is the Thevenin voltage $\mathbf{V}_{\text {th }}$ in the Thevenin equivalent circuit for the network external to the resistor \boldsymbol{R} for the network below?

A.	5 V
B.	20 V
C	8 V
D.	6.75 V

Show your work here including Thevenin equivalent circuit. You can use a calculator.
26. What is the $\boldsymbol{R}_{\boldsymbol{t} \boldsymbol{h}}$ in the Thevenin equivalent circuit for the network external to the resistor \boldsymbol{R} for the network below?

Show your work here including Thevenin equivalent circuit. You can use a calculator.

